Showing 20 articles starting at article 1061
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Computer Science: Quantum Computers
Published Study proposes new framework to identify keystone microbial species



Microbial communities are thought to contain keystone species, which can disproportionately affect the stability of the communities, even if only present in low abundances. Identifying these keystone species can be challenging, especially in the human gut, since it is not feasible to isolate them through systematic elimination. Researchers have designed a new data-driven keystone species identification (DKI) framework that uses machine learning to resolve this difficulty.
Published Genomic tug of war could boost cancer therapy



Researchers have discovered a 'genomic tug of war' in animal studies that could influence how well certain patients -- or certain cancers -- respond to decitabine, a drug used to treat myelodysplastic syndromes that is plagued by drug resistance issues. For the first time, researchers show that decitabine causes coding and non-coding regions of DNA to engage in a tug of war for a gene activator, called H2A.Z. Typically, deticabine draws this gene activator away from coding DNA, causing gene expression to grind to a halt and cells to die. However, many types of cancer have very high levels of H2A.Z, which may help them overcome this decitabine-induced tug of war, allowing the cancer to grow.
Published How cell identity is preserved when cells divide



A new theoretical model helps explain how epigenetic memories, encoded in chemical modifications of chromatin, are passed from generation to generation. Within each cell's nucleus, researchers suggest, the 3D folding patterns of its genome determines which parts of the genome will be marked by these chemical modifications.
Published Much more than waste: Tiny vesicles exchange genetic information between cells in the sea



Researchers take a look at data that has so far been mostly discarded as contamination, revealing the previously underestimated role of extracellular vesicles (EVs). These are important for the exchange of genetic information between cells and thus for the microbial community in the sea.
Published Bear genes show circadian rhythms even during hibernation



The internal clocks of grizzly bears appear to keep ticking through hibernation, according to a genetic study. This persistence highlights the strong role of circadian rhythms in the metabolism of many organisms including humans. The genetic study confirmed observational evidence that bears' energy production still waxes and wanes in a daily pattern even as they slumber for several months without eating. The researchers also found that during hibernation the amplitude of the energy production was blunted, meaning the range of highs and lows was reduced. The peak also occurred later in the day under hibernation than during the active season, but the daily fluctuation was still there.
Published Hormones have the potential to treat liver fibrosis



Researchers have discovered previously unknown changes in a specific type of liver cells, potentially opening avenues for a new treatment for liver fibrosis, a potentially life-threatening condition. Currently, there are no drugs available to treat liver fibrosis.
Published More than meows: How bacteria help cats communicate



Many mammals, from domestic cats and dogs to giant pandas, use scent to communicate with each other. A new study shows how domestic cats send signals to each other using odors derived from families of bacteria living in their anal glands.
Published Plants that survived dinosaur extinction pulled nitrogen from air



Ancient cycad lineages that survived the extinction of the dinosaurs may have done so by relying on symbiotic bacteria in their roots to fix atmospheric nitrogen. The finding came from an effort to understand ancient atmospheres, but became an insight into plant evolution instead.
Published How bacteria recognize viral invasion and activate immune defenses



Bacteria have an array of strategies to counter viral invasion, but how they first spot a stranger in their midst has long been a mystery.
Published Microbes could help reduce the need for chemical fertilizers



A new metal-organic coating protects bacterial cells from damage without impeding their growth or function. The coated bacteria, which produce ammonia, could make it much easier for farmers to deploy microbes as fertilizers.
Published Visualizing 'traffic jams' inside living cells



Researchers have unveiled a groundbreaking approach to label-free visualization of intracellular cargo trafficking in living cells, achieving high-speed and limitless observation capabilities. By developing a cargo-localization interferometric scattering (CL-iSCAT) microscope, scientists meticulously tracked the intricate movements of numerous cargos in the bustling cellular world. Surprisingly, cells employ human-like strategies to manage their transport challenges.
Published Surveilling wetlands for infectious bird flu -- and finding it



Recently, morning omelets and holiday dinners have gotten more expensive. One likely cause is bird flu, outbreaks of which led to the deaths of millions of chickens and turkeys from infection or culling in 2022, according to the U.S. Department of Agriculture, and which still demands rigorous monitoring of wild populations. Now, researchers have developed a method that detected infectious bird flu virus in wetlands frequented by waterfowl.
Published Colliding ribosomes activate RNA repair



Researchers discover how ribosomes contribute to the recognition and removal of RNA crosslinking damage.
Published Novel C. diff structures are required for infection, offer new therapeutic targets



Newly discovered iron storage 'ferrosomes' inside the bacterium C. diff -- the leading cause of hospital-acquired infections -- are important for infection in an animal model and could offer new targets for antibacterial drugs. They also represent a rare demonstration of a membrane-bound structure inside a pathogenic bacterium, upsetting the biological dogma that bacteria do not contain organelles.
Published Dangerous bee virus less deadly in at least one US forest



Researchers have found that the deadly deformed wing virus (DMV) in bees may have evolved to be less deadly in at least one U.S. forest. The findings could have implications for preventing or treating the virus in managed colonies, researchers said.
Published Shedding new light on sugars, the 'dark matter' of cellular biology



Chemists have developed a new tool for detecting interactions between sugars and lectins, a discovery that could help in the fight against diseases like cancer.
Published Forecasting microbiomes for sustainability and health



Microbial communities, or microbiomes, are essential for safeguarding human and environmental health through the most widely used biotechnological process on our planet: biological wastewater treatment. However, the process itself is subject to constant changes, difficult to sustain over long periods of time and emits significant amounts of greenhouse gases.
Published Another step toward the HIV-1 vaccine: Dynamics of neutralizing antibodies



Longevity of neutralizing antibodies is an essential factor for an effective HIV-1 vaccination.
Published Keep it secret: Cloud data storage security approach taps quantum physics



Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.
Published How tiny hinges bend the infection-spreading spikes of a coronavirus



Far from being stiff and pointy, a coronavirus's infectious spikes are shaped like chicken drumsticks with the meaty part facing out, and the meaty part can tilt every which way on its slender stalk. A new study suggests that disabling those hinges could block infection.