Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

How T cells combat tuberculosis      (via sciencedaily.com)     Original source 

Scientists have uncovered important clues to how human T cells combat Mycobacterium tuberculosis, the bacterium that causes TB.

Biology: Cell Biology Biology: General Biology: Microbiology Biology: Zoology
Published

A rare recent case of retrovirus integration: An infectious gibbon ape leukaemia virus is colonizing a rodent's genome in New Guinea      (via sciencedaily.com)     Original source 

Retroviruses are viruses that multiply by incorporating their genes into the genome of a host cell. If the infected cell is a germ cell, the retrovirus can then be passed on to the next generation as an 'endogenous' retrovirus (ERV) and spread as part of the host genome in that host species. In vertebrates, ERVs are ubiquitous and sometimes make up 10 per cent of the host genome. However, most retrovirus integrations are very old, already degraded and therefore inactive -- their initial impact on host health has been minimized by millions of years of evolution. A research team has now discovered a recent case of retrovirus colonization in a rodent from New Guinea, the white-bellied mosaic-tailed rat.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Down to the core of poxviruses      (via sciencedaily.com)     Original source 

A recent re-emergence and outbreak of Mpox brought poxviruses back as a public health threat, underlining an important knowledge gap at their core. Now, a team of researchers lifted the mysteries of poxviral core architecture by combining various cryo-electron microscopy techniques with molecular modeling.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Computer Science: General
Published

Computer-engineered DNA to study cell identities      (via sciencedaily.com)     Original source 

A new computer program allows scientists to design synthetic DNA segments that indicate, in real time, the state of cells. It will be used to screen for anti-cancer or viral infections drugs, or to improve gene and cell-based immunotherapies.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology
Published

Smells like evolution: Fruit flies reveal surprises in chemical sensing      (via sciencedaily.com)     Original source 

New study reveals how gene expression shapes the diverse smelling and tasting abilities of different fly species. Most genes are surprisingly stable, but thousands have evolved to create unique olfactory landscapes. Sex differences in sensing are widespread and involve specific cell types in key tissues. The study provides insights into the evolution of sensory systems in general, with potential implications for understanding human olfaction.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Energy: Technology Environmental: Ecosystems Environmental: General
Published

Microbial division of labor produces higher biofuel yields      (via sciencedaily.com)     Original source 

Scientists have found a way to boost ethanol production via yeast fermentation, a standard method for converting plant sugars into biofuels. Their approach relies on careful timing and a tight division of labor among synthetic yeast strains to yield more ethanol per unit of plant sugars than previous approaches have achieved.

Biology: Cell Biology Biology: Microbiology Chemistry: General Offbeat: General Offbeat: Plants and Animals
Published

Scientists 'break the mould' by creating new colors of 'blue cheese'      (via sciencedaily.com)     Original source 

Experts have discovered how to create different colors of blue cheese. After discovering how the classic blue-green veining is created, a team of experts were able to create a variety of different fungal strains that could be used to make cheese with colors ranging from white to yellow-green to red-brown-pink and light and dark blues.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Ecology: Sea Life Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

Vitamin B12 adaptability in Antarctic algae has implications for climate change, life in the Southern Ocean      (via sciencedaily.com)     Original source 

The algae P. antarctica has two forms of the enzyme that makes the amino acid methionine, one needing B12, and one that is slower, but doesn't need it. This means it has the ability to adapt and survive with low B12 availability. The presence of the MetE gene in P. antarctica gives the algae the ability to adapt to lower vitamin B12 availability, giving it a potential advantage to bloom in the early austral spring when bacterial production is low. P. antarctica takes in the CO2 and releases oxygen through photosynthesis. Understanding its ability to grow in environments with low vitamin B12 availability can help climate modelers make more accurate predictions.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Environmental: Ecosystems Geoscience: Geochemistry
Published

New technology unscrambles the chatter of microbes      (via sciencedaily.com)     Original source 

Researchers have developed a new search tool to that can match microbes to the metabolites they produce with no prior knowledge, an innovation that could transform our understanding of both human health and the environment.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnesium protects tantalum, a promising material for making qubits      (via sciencedaily.com)     Original source 

Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.

Biology: Biochemistry Biology: Microbiology
Published

Common food preservative has unexpected effects on the gut microbiome      (via sciencedaily.com)     Original source 

Analysis of a common preservative used to kill pathogens in food shows that it affects beneficial bacteria as well, threatening the healthy balance of the gut microbiome.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists see an ultra-fast movement on surface of HIV virus      (via sciencedaily.com)     Original source 

Seeing a glycoprotein on the envelope of the HIV virus snap open and shut in mere millionths of a second is giving investigators a new handle on the surface of the virus that could lead to broadly neutralizing antibodies for an AIDS vaccine. Being able to attach an antibody specifically to this little structure that would prevent it from popping open would be key.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Mechanism discovered that protects tissue after faulty gene expression      (via sciencedaily.com)     Original source 

A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Disrupted cellular function behind type 2 diabetes in obesity      (via sciencedaily.com)     Original source 

Disrupted function of 'cleaning cells' in the body may help to explain why some people with obesity develop type 2 diabetes, while others do not. A study describes this newly discovered mechanism.

Biology: Biochemistry Biology: General Biology: Microbiology Biology: Zoology Offbeat: General Offbeat: Plants and Animals
Published

Zebrafish navigate to find their comfortable temperature      (via sciencedaily.com)     Original source 

Zebrafish are smaller than your little finger, with a brain no more than half the size of a pinhead. Yet these animals possess an efficient navigation system that enables them to find their way back to spots in the water where the temperature suits them.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General Biology: Microbiology
Published

The arrangement of bacteria in biofilms affects their sensitivity to antibiotics      (via sciencedaily.com)     Original source 

Many bacteria form an antibiotic-resistant slime. Research detailing that slime's structure could help lead to new treatments.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology
Published

Resistant bacteria can remain in the body for years      (via sciencedaily.com)     Original source 

Fighting disease-causing bacteria becomes more difficult when antibiotics stop working. People with pre-existing conditions in particular can carry resistant germs and suffer from repeated infections for years, according to a new study.