Showing 20 articles starting at article 901
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Mathematics: Statistics
Published From infamy to ingenuity: Bacterial hijack mechanisms as advanced genetic tools



Researchers have uncovered the intricate molecular mechanism used by parasitic phytoplasma bacteria, known for inducing 'zombie-like' effects in plants.
Published 'Shocking' discovery: Electricity from electric eels may transfer genetic material to nearby animals



Researchers have discovered that electric eels can alter the genes of tiny fish larvae with their electric shock. Their findings help to better understand electroporation, a method by which genes can be transported using electricity.
Published Deep sea sensor reveals that corals produce reactive oxygen species



A new sensor on the submersible Alvin discovered reactive oxygen species for the first time in deep-sea corals, broadening our understanding of fundamental coral physiology.
Published More than 100 'magic mushroom' genomes point the way to new cultivars



Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.
Published Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases



While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.
Published New technique efficiently offers insight into gene regulation



Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.
Published Pathogens use force to breach immune defenses, study finds



New research has revealed a previously unknown process through which pathogens are able to defeat a cell's defense mechanisms with physical force. The discovery represents a potential game-changer in the fight against intracellular pathogens, which cause infectious diseases such as tuberculosis, malaria and chlamydia.
Published A patch of protection against Zika virus



A simple-to-apply, needle-free vaccine patch is being developed to protect people from the potentially deadly mosquito-borne Zika virus.
Published Shedding light on the synthesis of sugars before the origin of life



Pentoses are essential carbohydrates in the metabolism of modern lifeforms, but their availability on early Earth is unclear since these molecules are unstable. Now, researchers reveal a chemical pathway compatible with early Earth conditions, by which C6 aldonates could have acted as a source of pentoses without the need for enzymes. Their findings provide clues about primitive biochemistry and bring us closer to understanding life's origin.
Published Harnessing the power of a parasite that can stop pain



For the first time, scientists have begun to figure out why the disfiguring skin lesions caused by cutaneous leishmaniasis don't hurt.
Published Inoculation against diseased fields



Farmland often harbors a multitude of pathogens which attack plants and reduce yields. A research team has now shown that inoculating the soil with mycorrhizal fungi can help maintain or even improve yields without the use of additional fertilizers or pesticides. In a large-scale field trial, plant yield increased by up to 40 percent.
Published Armed to the hilt: Study solves mystery behind bacteria's extensive weaponry



A new study tackles the mystery of why bacteria often carry diverse ranges of weapons. The findings show that different weapons are best suited to different competition scenarios. Short-range weapons help bacteria to invade established communities; long-range weapons are useful once established.
Published This 'gross' mixture has big benefits for the study of bacteria



Researchers have discovered that growing bacteria on agar mixed with organs is an efficient and effective way to study infectious pathogens.
Published A new bacterial species from a hydrothermal vent throws light on their evolution



A new bacterial species discovered at the deep-sea hydrothermal vent site 'Crab Spa' provides a deeper understanding of bacterial evolution.
Published Study of ancient British oral microbiomes reveals shift following Black Death



The Second Plague Pandemic of the mid-14th century, also known as the Black Death, killed 30-60 percent of the European population and profoundly changed the course of European history. New research suggests that this plague, potentially through resulting changes in diet and hygiene, may also be associated with a shift in the composition of the human oral microbiome toward one that contributes to chronic diseases in modern-day humans.
Published Clever dosage control mechanism of biallelic genes



Researchers have uncovered a mechanism that safeguards the biallelic expression of haploinsufficient genes, shedding light on the importance of having two copies of each chromosome. A study identified the epigenetic regulator MSL2 an 'anti-monoallelic' factor that maintains biallelic gene dosage. This discovery not only reveals a communication system between parental alleles but also points to potential therapeutic strategies for diseases associated with haploinsufficient genes.
Published Researchers decipher enzyme scissors of intestinal microbes



Fruit and vegetables contain a variety of plant natural products such as flavonoids, which give fruits their colour and are said to have health-promoting properties. Most plant natural products occur in nature as glycosides, i.e. chemical compounds with sugars. In order for humans to absorb the healthy plant natural products, the sugar must be split off in the intestine. Microorganisms in the intestinal flora help to speed up the process. So-called C-glycosides, i.e. plant natural products with a carbon-based bond to a sugar, would even be practically indigestible without the intestinal microbes (e.g. nothofagin in rooibos tea).
Published Releasing brakes on biocatalysis



Enzymes from microorganisms can produce hydrogen (H2) under certain conditions, which makes them potential biocatalysts for biobased H2 technologies. In order to make this hydrogen production efficient, researchers are trying to identify and eliminate possible limiting factors. These include formaldehyde, which occurs naturally as a metabolic product in cells and inhibits the particularly efficient [FeFe] hydrogenase.
Published Tracing the evolution of the 'little brain'



The evolution of higher cognitive functions in humans has so far mostly been linked to the expansion of the neocortex. Researchers are increasingly realizing, however, that the 'little brain' or cerebellum also expanded during evolution and probably contributes to the capacities unique to humans. A research team has now generated comprehensive genetic maps of the development of cells in the cerebella of human, mouse and opossum. Comparisons of these maps reveal both ancestral and species-specific cellular and molecular characteristics of cerebellum development.
Published Newborn babies at risk from bacteria commonly carried by mothers



One in 200 newborns is admitted to a neonatal unit with sepsis caused by a bacteria commonly carried by their mothers -- much greater than the previous estimate, say researchers. The team has developed an ultra-sensitive test capable of better detecting the bacteria, as it is missed in the vast majority of cases.