Showing 20 articles starting at article 1541
< Previous 20 articles Next 20 articles >
Categories: Anthropology: General, Biology: Microbiology
Published Symbiotic and pathogenic fungi may use similar molecular tools to manipulate plants



Symbiotic and pathogenic fungi that interact with plants are distantly related and don't share many genetic similarities. Comparing plant pathogenic fungi and plant symbiotic fungi, scientists at the Sainsbury Laboratory Cambridge University (SLCU) have discovered that these remote relatives are using a similar group of proteins to manipulate and live within plants.
Published Engineers report low-cost human biomarker sensor designs



Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.
Published Researchers show mobile elements monkeying around the genome



Whole-genomic sequencing has revolutionized the amount and detail of genetic diversity now available to researchers to study. While the researchers previously had looked at a few hundred mobile elements or 'jumping genes,' primarily of the Alu and L1 types, they were now able to analyze over 200,000 elements computationally, confirming and expanding on previous studies. Their findings provide more evidence of the fluidity of species and continuous spread of mobile and transposable genetic elements.
Published Why do some people live to be 100? Intestinal bacteria may hold the answer



Some people live longer than others -- possibly due to a unique combination of bacteria in their intestines, new research concludes.
Published Gut microbiome changes linked to precancerous colon polyps



A new study has linked certain types of gut bacteria to the development of precancerous colon polyps.
Published A protein mines, sorts rare earths better than humans, paving way for green tech



Rare earth elements, like neodymium and dysprosium, are a critical component to almost all modern technologies, from smartphones to hard drives, but they are notoriously hard to separate from the Earth's crust and from one another. Scientists have discovered a new mechanism by which bacteria can select between different rare earth elements, using the ability of a bacterial protein to bind to another unit of itself, or 'dimerize,' when it is bound to certain rare earths, but prefer to remain a single unit, or 'monomer,' when bound to others.
Published Geneticists discover hidden 'whole genome duplication' that may explain why some species survived mass extinctions



Geneticists have unearthed a major event in the ancient history of sturgeons and paddlefish that has significant implications for the way we understand evolution. They have pinpointed a previously hidden 'whole genome duplication' (WGD) in the common ancestor of these species, which seemingly opened the door to genetic variations that may have conferred an advantage around the time of a major mass extinction some 200 million years ago.
Published Study leads to milestone advances in understanding lethal bronzing of palm trees



Scientists have identified a key chemical associated with lethal bronzing (LB) infected palm trees. LB is a bacterial disease that kills more than 20 species of palm trees in the Southern United States and Caribbean and has been devastating the Florida green industries for nearly two decades.
Published Biological cleanup discovered for certain 'forever chemicals'



Chemical and environmental engineering scientists have identified two species of bacteria found in soil that break down a class of stubborn 'forever chemicals'-- per- and poly-fluoroalkyl substances, or PFAS, that have contaminated groundwater below industrial and military sites throughout the nation. The discovery gives hope for low-cost biological cleanup of these pollutants.
Published How the flu virus hacks our cells



Influenza epidemics, caused by influenza A or B viruses, result in acute respiratory infection. They kill half a million people worldwide every year. These viruses can also wreak havoc on animals, as in the case of avian flu. A team has now identified how the influenza A virus manages to penetrate cells to infect them. By attaching itself to a receptor on the cell surface, it hijacks the iron transport mechanism to start its infection cycle. By blocking the receptor involved, the researchers were also able to significantly reduce its ability to invade cells. These results highlight a vulnerability that could be exploited to combat the virus.
Published Plants can distinguish when touch starts and stops, study suggests



Even without nerves, plants can sense when something touches them and when it lets go, a study has found. In a set of experiments, individual plant cells responded to the touch of a very fine glass rod by sending slow waves of calcium signals to other plant cells, and when that pressure was released, they sent much more rapid waves. While scientists have known that plants can respond to touch, this study shows that plant cells send different signals when touch is initiated and ended.
Published Genetic change increased bird flu severity during U.S. spread



Scientists found the virus strains that arrived in 2021 soon acquired genes from viruses in wild birds in North America. The resulting reassortant viruses have spread across the continent and caused more severe disease.
Published Researchers use 'natural' system to identify proteins most useful for developing an effective HIV vaccine



Scientists have spent years trying to develop an effective HIV vaccine, but none have proven successful. Based on findings from a recently published study, a research team may have put science one step closer to that goal.
Published Scientists unveil RNA-guided mechanisms driving cell fate



The early stages of embryonic development contain many of life's mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments. Researchers have now characterized a critical time in mammalian embryonic development using powerful and innovative imaging techniques.
Published 4,000-year-old plague DNA found -- the oldest cases to date in Britain



Researchers have identified three 4,000-year-old British cases of Yersinia pestis, the bacteria causing the plague -- the oldest evidence of the plague in Britain to date.
Published Nanorobotic system presents new options for targeting fungal infections


Researchers have developed a nanorobot system that targets fungal infections in the mouth.
Published Researchers show that IgA fine tunes the body's interactions with microbes



A new study has demonstrated that IgA acts as a 'tuner' that regulates the number of microbes the body sees every day, restraining the systemic immune response to these commensal microbes and limiting the development of systemic immune dysregulation.
Published Early toilets reveal dysentery in Old Testament Jerusalem



Study of 2,500-year-old latrines from the biblical Kingdom of Judah shows the ancient faeces within contain Giardia -- a parasite that can cause dysentery.
Published Research offers clues for potential widespread HIV cure in people



New animal research is helping explain why at least five people have become HIV-free after receiving a stem cell transplant, and may bring scientists closer to developing what they hope will be a widespread cure for the virus that causes AIDS. A new study describes how two nonhuman primates were cured of the monkey form of HIV after receiving a stem cell transplant. It also reveals that two circumstances must co-exist for a cure to occur and documents the order in which HIV is cleared from the body.
Published Gene editing tool could help reduce spread of antimicrobial resistance



A new tool which could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.