Showing 20 articles starting at article 921

< Previous 20 articles        Next 20 articles >

Categories: Anthropology: Cultures, Biology: Microbiology

Return to the site home page

Biology: Biotechnology Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A new mechanism by which rotavirus makes you sick      (via sciencedaily.com)     Original source 

Scientists report a new mechanism by which rotavirus induces diarrhea by interfering with the normal absorption of nutrients in the intestine.

Biology: Microbiology Biology: Zoology Ecology: Extinction Ecology: Nature Ecology: Trees
Published

Nature and animal emojis don't accurately represent natural biodiversity      (via sciencedaily.com)     Original source 

The current emoji library doesn't accurately represent the 'tree of life' and the breadth of biodiversity seen in nature according to a new analysis. A team of conservation biologists categorized emojis related to nature and animals and mapped them onto the phylogenetic tree of life. They found that animals are well represented by the current emoji catalog, whereas plants, fungi, and microorganisms are poorly represented. Within the animal kingdom, vertebrates were over-represented while arthropods were underrepresented with respect to their actual biodiversity.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Zika's shape-shifting machinery, and a possible vulnerability      (via sciencedaily.com)     Original source 

Viruses have limited genetic material -- and few proteins -- so all the pieces must work extra hard. Zika is a great example; the virus only produces 10 proteins. Now researchers have shown how the virus does so much with so little and may have identified a therapeutic vulnerability.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

How immune cells recognize their enemies      (via sciencedaily.com)     Original source 

In order for immune cells to do their job, they need to know against whom they should direct their attack. Research teams a have identified new details in this process.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Offbeat: General Offbeat: Plants and Animals
Published

New genes can arise from nothing      (via sciencedaily.com)     Original source 

The complexity of living organisms is encoded within their genes, but where do these genes come from? Researchers resolved outstanding questions regarding the origin of small regulatory genes, and described a mechanism that creates their DNA palindromes. Under suitable circumstances, these palindromes evolve into microRNA genes.

Anthropology: General Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Biology: Zoology Ecology: Nature Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology Paleontology: Fossils Paleontology: General
Published

Molecular fossils shed light on ancient life      (via sciencedaily.com)     Original source 

Paleontologists are getting a glimpse at life over a billion years in the past based on chemical traces in ancient rocks and the genetics of living animals. New research combines geology and genetics, showing how changes in the early Earth prompted a shift in how animals eat.

Biology: Cell Biology Biology: Microbiology
Published

Manipulation of gut microbiota with flaxseed could reduce breast cancer risk      (via sciencedaily.com)     Original source 

A new study demonstrates that the human gut microbiome may be a factor in breast health. 

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology
Published

Growing biofilms actively alter host environment      (via sciencedaily.com)     Original source 

Dental plaque, gut bacteria and the slippery sheen on river rocks are all examples of biofilms, organized communities of microorganisms that colonize our bodies and the world around us. A new study reveals exactly how growing biofilms shape their environments and fine-tune their internal architecture to fit their surroundings. The findings may have implications for a wide variety of applications, from fighting disease to engineering new types of living active materials.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology
Published

Tiny llama nanobodies neutralize different noroviruses: Can they improve human anti-viral therapies?      (via sciencedaily.com)     Original source 

Researchers investigated a novel strategy to neutralize human noroviruses. They tested the ability of tiny antibodies produced by llamas, called nanobodies, to effectively neutralize human norovirus infection in the lab. The unexpected findings reveal that nanobodies could be developed as a therapeutic agent against human norovirus.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Fungus-fighting protein could help overcome severe autoimmune disease and cancer      (via sciencedaily.com)     Original source 

A protein in the immune system programmed to protect the body from fungal infections is also responsible for exacerbating the severity of certain autoimmune diseases such as irritable bowel disease (IBS), type 1 diabetes, eczema and other chronic disorders, new research has found.  The discovery could pave the way for new and more effective drugs, without the nasty side effects of existing treatments. In addition to helping to manage severe autoimmune conditions, the breakthrough could also help treat all types of cancer.  

Biology: General Biology: Marine Biology: Microbiology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography
Published

Greenhouse gases in oceans are altered by climate change impact on microbes      (via sciencedaily.com)     Original source 

The ocean is a global life-support system, and climate change causes such as ocean warming, acidification, deoxygenation, and nitrogen-deposition alter the delicate microbial population in oceans. The marine microbial community plays an important role in the production of greenhouse gases like nitrous oxide and methane. Scientists have explored the climate change impact on marine microbes. Their research helps raise awareness about climate change severity and the importance of ocean resources.

Biology: Marine Biology: Microbiology Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography Geoscience: Oceanography
Published

The ocean may be storing more carbon than estimated in earlier studies      (via sciencedaily.com)     Original source 

The ocean's capacity to store atmospheric carbon dioxide is some 20% greater than the estimates contained in the latest IPCC report. Scientists looked at the role played by plankton in the natural transport of carbon from surface waters down to the seabed. Plankton gobble up carbon dioxide and, as they grow, convert it into organic tissue via photosynthesis.

Biology: Biochemistry Biology: General Biology: Microbiology
Published

Bacteria's mucus maneuvers: Study reveals how snot facilitates infection      (via sciencedaily.com)     Original source 

Sniffles, snorts and blows of runny noses are the hallmarks of cold and flu season -- and that increase in mucus is exactly what bacteria use to mount a coordinated attack on the immune system, according to a new study. The team found that the thicker the mucus, the better the bacteria are able to swarm. The findings could have implications for treatments that reduce the ability of bacteria to spread.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Offbeat: General Offbeat: Plants and Animals
Published

More than 100 'magic mushroom' genomes point the way to new cultivars      (via sciencedaily.com)     Original source 

Scientists have amassed genome data for dozens of 'magic mushroom' isolates and cultivars, with the goal to learn more about how their domestication and cultivation has changed them. The findings may point the way to the production of intriguing new cultivars, say the researchers.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Researchers have cracked the cellular code on protein folding, offering hope for new therapeutic avenues for many diseases      (via sciencedaily.com)     Original source 

While we often think of diseases as caused by foreign bodies -- bacteria or viruses -- there are hundreds of diseases affecting humans that result from errors in cellular production of its proteins. A team of researchers recently leveraged the power of cutting-edge technology, including an innovative technique called glycoproteomics, to unlock the carbohydrate-based code that governs how certain classes of proteins form themselves into the complex shapes necessary to keep us healthy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

New technique efficiently offers insight into gene regulation      (via sciencedaily.com)     Original source 

Researchers have developed a new technique called MAbID. This allows them to simultaneously study different mechanisms of gene regulation, which plays a major role in development and disease. MAbID offers new insights into how these mechanisms work together or against each other.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology
Published

Pathogens use force to breach immune defenses, study finds      (via sciencedaily.com)     Original source 

New research has revealed a previously unknown process through which pathogens are able to defeat a cell's defense mechanisms with physical force. The discovery represents a potential game-changer in the fight against intracellular pathogens, which cause infectious diseases such as tuberculosis, malaria and chlamydia.