Showing 20 articles starting at article 461
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Early Humans, Biology: Microbiology
Published Copper beads in pig feed reshape swine gut microbiome



Copper is a natural antimicrobial material that, when added to pig feed, may promote the growth and health of the animals. Since pigs can tolerate high levels of the metal, researchers recently investigated whether copper might be used to promote their gut health and reduce the shedding of microbes to the environment.
Published Researchers uncover human DNA repair by nuclear metamorphosis



Researchers have discovered a DNA repair mechanism that advances understanding of how human cells stay healthy, and which could lead to new treatments for cancer and premature aging.
Published Coral reef microbes point to new way to assess ecosystem health



A new study shows that ocean acidification is changing the mix of microbes in coral reef systems, which can be used to assess ecosystem health.
Published Real-time detection of infectious disease viruses by searching for molecular fingerprinting



Researchers develop breakthrough technology for wide-ranging and ultra-sensitive active nano-spectral sensor, surpassing current limitations.
Published Twisted pollen tubes induce infertility



Plants with multiple sets of chromosomes, known as polyploids, are salt-tolerant or drought-resistant and often achieve higher yields. However, newly formed polyploid plants are often sterile or have reduced fertility and are unsuitable for breeding resistant lines. The reason is that the pollen tube in these plants grows incorrectly, which keeps fertilization from taking place. Pollen tube growth is mainly controlled by two genes that could be useful in crop breeding.
Published 'One ring to rule them all': How actin filaments are assembled by formins



Researchers have visualized at the molecular level how formins bind to the ends of actin filaments. This allowed them to uncover how formins mediate the addition of new actin molecules to a growing filament. Furthermore, the scientists elucidated the reasons for the different speeds at which the different formins promote this process.
Published How tardigrades can survive intense radiation



Researchers have discovered that tardigrades -- microscopic animals famed for surviving harsh extremes -- have an unusual response to radiation.
Published How blue-green algae manipulate microorganisms



A research team discovers previously unknown gene that indirectly promotes photosynthesis Protein regulator NirP1 influences the coordination of the nitrogen and carbohydrate metabolism 'Such protein regulators could in future be deployed in 'green' and 'blue' biotechnology for targeted control of the metabolism,' says geneticist.
Published Unlocking the 'chain of worms'



An international team of scientists has published a single-cell atlas for Pristina leidyi (Pristina), the water nymph worm, a segmented annelid with extraordinary regenerative abilities that has fascinated biologists for more than a century.
Published Millions of gamers advance biomedical research



4.5 million gamers around the world have advanced medical science by helping to reconstruct microbial evolutionary histories using a minigame included inside the critically and commercially successful video game, Borderlands 3. Their playing has led to a significantly refined estimate of the relationships of microbes in the human gut. The results of this collaboration will both substantially advance our knowledge of the microbiome and improve on the AI programs that will be used to carry out this work in future.
Published Evolution's recipe book: How 'copy paste' errors cooked up the animal kingdom



A series of whole genome and gene duplication events that go back hundreds of millions of years have laid the foundations for tissue-specific gene expression, according to a new study. The 'copy-paste' errors allowed animals to keep one copy of their genome or genes for fundamental functions, while the second copy could be used as raw material for evolutionary innovation. Events like these, at varying degrees of scale, occurred constantly throughout the bilaterian evolutionary tree and enabled traits and behaviours as diverse as insect flight, octopus camouflage and human cognition.
Published Green-to-red transformation of Euglena gracilis using bonito stock and intense red light



Euglena gracilis, often regarded as a 'superfood,' is a promising microalga with many health and nutritional benefits. In a recent study, researchers found an efficient and low-resource approach to trigger a reddening reaction in E. gracilis using red light and a bonito fish-based culture medium. This reaction is a sign of higher and diverse carotenoid content ratio, meaning the proposed method could help turn E. gracilis into an even more nutritious food source.
Published Researchers resolve old mystery of how phages disarm pathogenic bacteria



Bacterial infections pose significant challenges to agriculture and medicine, especially as cases of antibiotic-resistant bacteria continue to rise. In response, scientists are elucidating the ways that bacteria-infecting viruses disarm these pathogens and ushering in the possibility of novel treatment methods.
Published Even the simplest marine organisms tend to be individualistic



Sport junkie or couch potato? Always on time or often late? The animal kingdom, too, is home to a range of personalities, each with its own lifestyle. Biologists report on a surprising discovery: even simple marine polychaete worms shape their day-to-day lives on the basis of highly individual rhythms. This diversity is of interest not just for the future of species and populations in a changing environment, but also for medicine.
Published Carbon beads help restore healthy gut microbiome and reduce liver disease progression



Innovative carbon beads reduce bad bacteria and inflammation in animal models, which are linked to liver cirrhosis and other serious health issues.
Published How seaweed became multicellular



A deep dive into macroalgae genetics has uncovered the genetic underpinnings that enabled macroalgae, or 'seaweed,' to evolve multicellularity. Three lineages of macroalgae developed multicellularity independently and during very different time periods by acquiring genes that enable cell adhesion, extracellular matrix formation, and cell differentiation, researchers report. Surprisingly, many of these multicellular-enabling genes had viral origins. The study, which increased the total number of sequenced macroalgal genomes from 14 to 124, is the first to investigate macroalgal evolution through the lens of genomics.
Published Microbial food as a strategy food production of the future



Scientists have summarized microbial food production strategies.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published PFAS exposure from high seafood diets may be underestimated



A study suggests that people with diets high in seafood may face a greater risk of exposure to PFAS -- the family of human-made toxins known as 'forever chemicals' -- than previously thought. The researchers stress the need for more stringent public health guidelines that establish how much seafood people can safely consume to limit their exposure, particularly in coastal areas where seafood is frequently eaten.
Published First step to untangle DNA: Supercoiled DNA captures gyrase like a lasso ropes cattle



Researchers reveal how DNA gyrase resolves DNA entanglements. The findings not only provide novel insights into this fundamental biological mechanism but also have potential practical applications. Gyrases are biomedical targets for the treatment of bacterial infections and the similar human versions of the enzymes are targets for many anti-cancer drugs. Better understanding of how gyrases work at the molecular level can potentially improve clinical treatments.