Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Early Humans, Biology: Microbiology
Published Natural recycling at the origin of life



How was complex life able to develop on the inhospitable early Earth? At the beginning there must have been ribonucleic acid (RNA) to carry the first genetic information. To build up complexity in their sequences, these biomolecules need to release water. On the early Earth, which was largely covered in seawater, that was not so easy to do.
Published Scientists close in on TB blood test which could detect millions of silent spreaders



Millions of people are spreading tuberculosis unknowingly - now scientists say they are close to developing a new test that is as simple as the lateral flows used during the Covid pandemic.
Published Researchers invent artificial intelligence model to design new superbug-fighting antibiotics



Researchers at McMaster University and Stanford University have invented a new generative artificial intelligence model which can design billions of new antibiotic molecules that are inexpensive and easy to build in the laboratory.
Published Signs of life would be detectable in single ice grain emitted from extraterrestrial moons



Could life be found in frozen sea spray from moons orbiting Saturn or Jupiter? New research finds that life can be detected in a single ice grain containing one bacterial cell or portions of a cell. The results suggest that if life similar to that on Earth exists on these planetary bodies, that this life should be detectable by instruments launching in the fall.
Published As we age, our cells are less likely to express longer genes



Aging may be less about specific 'aging genes' and more about how long a gene is. Many of the changes associated with aging could be occurring due to decreased expression of long genes, say researchers. A decline in the expression of long genes with age has been observed in a wide range of animals, from worms to humans, in various human cell and tissue types, and also in individuals with neurodegenerative disease. Mouse experiments show that the phenomenon can be mitigated via known anti-aging factors, including dietary restriction.
Published Research finds a direct communication path between the lungs and the brain



New research finds a direct communication path between the lungs and the brain which may change the way we treat respiratory infections and chronic conditions. The lungs are using the same sensors and neurons in the pain pathway to let the brain know there's an infection. The brain then prompts the symptoms associated with sickness. Findings indicate we may have to treat the nervous system as well as the infection.
Published Maize genes control little helpers in the soil



Tiny organisms such as bacteria and fungi help to promote the health and function of plant roots. It is commonly assumed that the composition of these microbes is dependent on the properties of the soil. However, researchers have now discovered when studying different local varieties of maize that the genetic makeup of the plants also helps to influence which microorganisms cluster around the roots.
Published Decoding the plant world's complex biochemical communication networks



A research team has begun translating the complex molecular language of petunias. Their grammar and vocabulary are well hidden, however, within the countless proteins and other compounds that fill floral cells. Being rooted to the ground, plants can't run away from insects, pathogens or other threats to their survival. But plant scientists have long known that they do send warnings to each other via scent chemicals called volatile organic compounds.
Published Deep Earth electrical grid mystery solved



To 'breathe' in an environment without oxygen, bacteria in the ground beneath our feet depend upon a single family of proteins to transfer excess electrons, produced during the 'burning' of nutrients, to electric hairs called nanowires projecting from their surface.
Published Bacteria subtype linked to growth in up to 50% of human colorectal cancers



Researchers have found that a specific subtype of a microbe commonly found in the mouth is able to travel to the gut and grow within colorectal cancer tumors. This microbe is also a culprit for driving cancer progression and leads to poorer patient outcomes after cancer treatment. The findings could help improve therapeutic approaches and early screening methods for colorectal cancer, which is the second most common cause of cancer deaths in adults in the U.S. according to the American Cancer Society.
Published Craving snacks after a meal? It might be food-seeking neurons, not an overactive appetite



Psychologists have discovered a circuit in the brain of mice that makes them crave food and seek it out, even when they are not hungry. When stimulated, this cluster of cells propels mice to forage vigorously and to prefer fatty and pleasurable foods like chocolate over healthier foods like carrots.
Published Experts warn climate change will fuel spread of infectious diseases



Infectious diseases specialists call the medical field to be ready to deal with the impact of climate change on spreading diseases, such as malaria, Valley fever, E. coli and Lyme disease.
Published Fiber, genes and the gut microbiome: Study reveals possible triggers for inflammatory bowel disease



A new study finds a complex interplay between diet, genes, and the gut microbiota that could explain why IBD develops.
Published A protein found in human sweat may protect against Lyme disease



Human sweat contains a protein that may protect against Lyme disease. About one-third of the population carries a genetic variant of this protein that is associated with Lyme disease in genome-wide association studies.
Published Climate change alters the hidden microbial food web in peatlands



To better understand a carbon sink in danger, scientists are turning to tiny organisms that have long been overlooked.
Published Genes identified that allow bacteria to thrive despite toxic heavy metal in soil



Some soil bacteria can acquire sets of genes that enable them to pump the heavy metal nickel out of their systems, a study has found. This enables the bacteria to not only thrive in otherwise toxic soils but help plants grow there as well. A research team pinpointed a set of genes in wild soil bacteria that allows them to do this in serpentine soils which have naturally high concentrations of toxic nickel. The genetic discovery could help inform future bioremediation efforts that seek to return plants to polluted soils.
Published Industrial societies losing healthy gut microbes



Our eating habits in industrialized societies are far removed from those of ancient humans. This is impacting our intestinal flora, it seems, as newly discovered cellulose degrading bacteria are being lost from the human gut microbiome, especially in industrial societies.
Published New discovery concerning occurrence of antibiotic resistance



A new study shows how heteroresistance, a transient resistance common in many bacteria, can act as a precursor to the development of antibiotic resistance.
Published Rise in global fungal drug-resistant infections



A global wave of infections caused by fungi growing drug-resistant has the medical community issuing precautions on how to protect yourself.
Published Cacao plants' defense against toxic cadmium unveiled



Researchers used bright X-rays to unveil how cacao trees protect themselves from toxic metal cadmium.