Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Biology: Microbiology, Paleontology: Early Mammals and Birds
Published Receptors make dairy cows a prime target for influenza



A study helps explain why dairy cows infected by highly pathogenic avian influenza are shedding the virus in their milk. Their findings could help develop biosecurity measures aimed at slowing the spread of the illness.
Published A better way to make RNA drugs



RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Insight into one of life's earliest ancestors revealed in new study



Researchers have shed light on Earth's earliest ecosystem, showing that within a few hundred million years of planetary formation, life on Earth was already flourishing.
Published A comprehensive derivative synthesis method for development of new antimicrobial drugs



A method to screen a wide variety of drug candidates without laborious purification steps could advance the fight against drug-resistant bacteria.
Published Respiratory bacteria 'turn off' immune system to survive



Researchers have identified how a common bacterium is able to manipulate the human immune system during respiratory infections and cause persistent illness.
Published A stealth fungus has decimated North American bats but scientists may be a step closer to treating white-nose syndrome



An invasive fungus that colonizes the skin of hibernating bats with deadly consequences is a stealthy invader that uses multiple strategies to slip into the small mammals' skin cells and quietly manipulate them to aid its own survival. The fungus, which causes the disease white-nose syndrome, has devastated several North American species over the last 18 years.
Published Muscle machine: How water controls the speed of muscle contraction



The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality



Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Researchers develop a way to make lifesaving phages accessible, transportable and much easier to use



Researchers have developed a simple way to bring bacteriophage therapy into much closer reach for clinicians struggling to save patients with antimicrobial-resistant infections. The technology makes it possible to sort through hundreds or even thousands of phages in less than two hours to identify which will respond to a particular infection.
Published Mapping the world's fungi from air samples



Researchers have found that the key to a quick and cost-effective mapping of biodiversity has been right in front of our eyes all along, but at the same time invisible -- i.e., in the air that surrounds us.
Published Opening the right doors: 'Jumping gene' control mechanisms revealed



International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published Wild plants and crops don't make great neighbors, research finds



Native plants and non-native crops do not fare well in proximity to one another, attracting pests that spread diseases in both directions, according to two new studies.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Researchers pinpoint brain cells that delay first bite of food



Do you grab a fork and take a first bite of cake, or say no and walk away? Our motivation to eat is driven by a complex web of cells in the brain that use signals from within the body, as well as sensory information about the food in front of us, to determine our behaviors. Now, scientists have identified a group of neurons in a small and understudied region of the brain -- the parasubthalamic nucleus (PSTN) -- that controls when an animal decides to take a first bite of food.
Published Pumpkin disease not evolving, could make a difference for management



The pathogen that causes bacterial spot is very good at what it does. Forming small lesions on the rinds of pumpkins, melons, cucumbers, and other cucurbits, it mars the fruits' appearance and ushers in secondary pathogens that lead to rot and severe yield loss. The bacterium, Xanthomonas cucurbitae, is so successful that it has had no reason to evolve through time or space.
Published Discovery of a new defense mechanism in bacteria



When confronted with an antibiotic, toxic substance, or other source of considerable stress, bacteria are able to activate a defense mechanism using cell-to-cell communication to 'warn' unaffected bacteria, which can then anticipate, shield themselves and spread the warning signal.
Published Not so simple: Mosses and ferns offer new hope for crop protection



Mosses, liverworts, ferns and algae may offer an exciting new research frontier in the global challenge of protecting crops from the threat of disease.
Published New period product offers progress in women's health



Researchers have created an eco-friendly, blood absorbent biomaterial that improves the performance of menstrual products by minimizing blood leakage and spilling, while also helping prevent infection.
Published Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease



Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.
Published Big gain in battle against harmful bacteria



An unexpected find has enabled important progress to be made in the battle against harmful bacteria.