Showing 20 articles starting at article 401
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Environmental: Ecosystems
Published Improving fuel cell durability with fatigue-resistant membranes



In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.
Published Apex predators not a quick fix for restoring ecosystems



An experiment spanning more than two decades has found that removal of apex predators from an ecosystem can create lasting changes that are not reversed after they return -- at least, not for a very long time. The study challenges the commonly held belief that the reintroduction of wolves to Yellowstone National Park restored an ecosystem degraded by their absence.
Published Ammonia attracts the shipping industry, but researchers warn of its risks



Switching to ammonia as a marine fuel, with the goal of decarbonization, can instead create entirely new problems. This is shown in a study where researchers carried out life cycle analyses for batteries and for three electrofuels including ammonia. Eutrophication and acidification are some of the environmental problems that can be traced to the use of ammonia -- as well as emissions of laughing gas, which is a very potent greenhouse gas.
Published Microbial division of labor produces higher biofuel yields



Scientists have found a way to boost ethanol production via yeast fermentation, a standard method for converting plant sugars into biofuels. Their approach relies on careful timing and a tight division of labor among synthetic yeast strains to yield more ethanol per unit of plant sugars than previous approaches have achieved.
Published Small but mighty -- study highlights the abundance and importance of the ocean's tiniest inhabitants



New research sheds light on tiny plankton, which measure less than 0.02mm in diameter but can make up more than 70% of the plankton biomass found in the ocean.
Published Study challenges the classical view of the origin of the Antarctic Circumpolar Current and warns of its vulnerability



The Circumpolar Current works as a regulator of the planet's climate. Its origins were thought to have caused the formation of the permanent ice in Antarctica about 34 million years ago. Now, a study has cast doubt on this theory, and has changed the understanding of how the ice sheet in Antarctic developed in the past, and what this could mean in the future as the planet's climate changes.
Published New technology unscrambles the chatter of microbes



Researchers have developed a new search tool to that can match microbes to the metabolites they produce with no prior knowledge, an innovation that could transform our understanding of both human health and the environment.
Published How leafcutter ants cultivate a fungal garden to degrade plants and provide insights into future biofuels



Scientists developed a new method to map exactly how a fungus works with leafcutter ants in a complex microbial community to degrade plant material at the molecular level. The team's insights are important for biofuels development.
Published Permafrost alone holds back Arctic rivers -- and a lot of carbon



A new study provides the first evidence that the Arctic's frozen soil is the dominant force shaping Earth's northernmost rivers, confining them to smaller areas and shallower valleys than rivers to the south. But as climate change weakens Arctic permafrost, the researchers calculate that every 1 degree Celsius of global warming could release as much carbon as 35 million cars emit in a year as polar waterways expand and churn up the thawing soil.
Published Tidal landscapes a greater carbon sink than previously thought



Mangroves and saltmarshes sequester large amounts of carbon, mitigating the greenhouse effect. New research shows that these environments are perhaps twice as effective as previously thought.
Published Microbial research unravels a global nitrogen mystery



A research findings show that different AOM lineages employ different regulatory strategies for ammonia or urea utilization, thereby minimizing direct competition with one another and allowing for coexistence.
Published Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry



Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.
Published Discovery of a third RNA virus linage in extreme environments Jan 17, 2024



A research group has discovered a novel RNA viral genome from microbes inhabiting a high-temperature acidic hot spring. Their study shows that RNA viruses can live in high-temperature environments (70-80 degrees Celsius), where no RNA viruses have been observed before. In addition to the two known RNA virus kingdoms, a third kingdom may exist.
Published Greenland is a methane sink rather than a source



Researchers have concluded that the methane uptake in dry landscapes exceeds methane emissions from wet areas across the ice-free part of Greenland. The results of the new study contribute with important knowledge for climate models. The researchers are now investigating whether the same finding applies to other polar regions.
Published As sea otters recolonize California estuary, they restore its degraded geology



As sea otters recolonize a California estuary, they are restoring its degraded geology by keeping populations of overgrazing marsh crabs in check, a new study shows. The crabs' appetite for plant roots, and their tunneling behavior had caused many of the estuary's marshes and creekbanks to erode and collapse in the otters' absence. Today, erosion has slowed by up to 90% in areas with large otter populations and marshes and streambeds are restabilizing.
Published New research shows how pollutants from aerosols and river run-off are changing the marine phosphorus cycle in coastal seas



New research sheds light on how pollutants from aerosols and river run-off are impacting coastal seas. The research identified an 'Anthropogenic Nitrogen Pump' which changes the phosphorus cycle and therefore likely coastal biodiversity and associated ecosystem services.
Published Rising sea levels could lead to more methane emitted from wetlands



A Bay Area wetlands ecosystem that was expected to serve as a carbon sink is emitting surprisingly high levels of methane, a potent greenhouse gas. The study suggests factors governing carbon cycles in these habitats are even more complex than we thought.
Published Scientists develop novel method to estimate biodiversity loss in Singapore over the past two centuries



Scientists have employed novel statistical methods to reveal the extent of biodiversity loss in Singapore over the past two centuries. The study paints the most accurate picture to date of the ecological impact of deforestation and urban development in the tropical city-state. From a comprehensive dataset, the study estimated that Singapore has lost 37 per cent of its species.
Published How waves and mixing drive coastal upwelling systems



Large coastal upwelling systems along the eastern margins of the Atlantic and Pacific Oceans are among the most biologically productive and biodiverse regions of the world's oceans. Typically, the strength and timing of upwelling in such systems are linked to the prevailing winds. Interestingly, in some tropical regions, high levels of productivity occur even when the upwelling favorable winds are weak.
Published Use it or lose it: How seagrasses conquered the sea



Seagrasses provide the foundation of one of the most highly biodiverse, yet vulnerable, coastal marine ecosystems globally. They arose in three independent lineages from their freshwater ancestors some 100 million years ago and are the only fully submerged, marine flowering plants. Moving to such a radically different environment is a rare evolutionary event and definitely not easy. How did they do it? New reference quality genomes provide important clues with relevance to their conservation and biotechnological application.