Offbeat: General Offbeat: Space Space: Exploration Space: General Space: The Solar System
Published

New Mars gravity analysis improves understanding of possible ancient ocean      (via sciencedaily.com)     Original source 

The first use of a novel method of analyzing Mars' gravitational force supports the idea that the planet once had an extensive northern ocean. In doing so, the method defines the scope of what scientists refer to as theĀ northern Martian paleo-oceanĀ in more detail.

Anthropology: Cultures Anthropology: Early Humans Anthropology: General Archaeology: General Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Archaeologists discover world's oldest wooden structure      (via sciencedaily.com)     Original source 

Half a million years ago, earlier than was previously thought possible, humans were building structures made of wood, according to new research.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: Microbiology Biology: Zoology Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle      (via sciencedaily.com)     Original source 

A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Space Space: Cosmology Space: General
Published

New recipes for origin of life may point way to distant, inhabited planets      (via sciencedaily.com)     Original source 

Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Genetics Biology: Microbiology Ecology: Animals Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: Fossils Paleontology: General
Published

RNA for the first time recovered from an extinct species      (via sciencedaily.com)     Original source 

A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.

Space: Astronomy Space: Exploration Space: General Space: The Solar System
Published

New findings suggest Moon may have less water than previously thought      (via sciencedaily.com) 

A team recently calculated that most of the Moon's permanently shadowed regions (PSRs) are at most around 3.4 billion years old and can contain relatively young deposits of water ice. Water resources are considered key for sustainable exploration of the Moon and beyond, but these findings suggest that current estimates for cold-trapped ices are too high.

Space: Exploration Space: General Space: The Solar System
Published

Engineered compound shows promise in preventing bone loss in space      (via sciencedaily.com)     Original source 

Mice treated aboard the International Space Station showed significantly reduced bone loss.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Snaps supersonic outflow of young star      (via sciencedaily.com) 

Herbig-Haro (HH) objects are luminous regions surrounding newborn stars, formed when stellar winds or jets of gas spewing from these newborn stars form shock waves colliding with nearby gas and dust at high speeds. This image of HH 211 from NASA's James Webb Space Telescope reveals an outflow from a Class 0 protostar, an infantile analog of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun).

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Electrons from Earth may be forming water on the Moon      (via sciencedaily.com) 

Planetary scientists have discovered that high energy electrons in Earth's plasma sheet are contributing to weathering processes on the Moon's surface and, importantly, the electrons may have aided the formation of water on the lunar surface.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Water world? Methane, carbon dioxide in atmosphere of massive exoplanet      (via sciencedaily.com) 

A new investigation with NASA's James Webb Space Telescope into K2-18 b, an exoplanet 8.6 times as massive as Earth, has revealed the presence of carbon-bearing molecules including methane and carbon dioxide. Webb's discovery adds to recent studies suggesting that K2-18 b could be a Hycean exoplanet, one which has the potential to possess a hydrogen-rich atmosphere and a water ocean-covered surface.

Space: Astrophysics Space: General Space: Structures and Features Space: The Solar System
Published

New insights into neutrino interactions      (via sciencedaily.com)     Original source 

Elusive fundamental particles called neutrinos are predicted to interact unexpectedly with photons under extreme conditions.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Study hints at the existence of the closest black holes to Earth in the Hyades star cluster      (via sciencedaily.com) 

A new article hints at the existence of several black holes in the Hyades cluster -- the closest open cluster to our solar system -- which would make them the closest black holes to Earth ever detected.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Exploration Space: General Space: Structures and Features Space: The Solar System
Published

Ravenous black hole consumes three Earths'-worth of star every time it passes      (via sciencedaily.com) 

Massive burst of X-rays detected by astronomers indicates material three times the mass of Earth burning up in a black hole. They observed a star like our own Sun being eaten away every time it orbits close. First time a Sun-like star being repeatedly disrupted by a low mass black hole has been seen, opening the possibility of a range of star and black hole combinations to be discovered.

Anthropology: General Offbeat: General Offbeat: Paleontology and Archeology
Published

'Monstrous births' and the making of race in the nineteenth-century United States      (via sciencedaily.com)     Original source 

From the Middle Ages to the Enlightenment, 'monstrous births' -- malformed or anomalous fetuses -- were, to Western medicine, an object of superstition. In 19th-century America, they became instead an object of the 'modern scientific study of monstrosity,' a field formalized by French scientist Isidore Geoffroy Saint-Hilaire. This clinical turn was positioned against the backdrop of social, political, and economic activity that codified laws governing slavery, citizenship, immigration, family, wealth, and access to resources.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features Space: The Solar System
Published

New cosmological constraints on the nature of dark matter      (via sciencedaily.com) 

New research has revealed the distribution of dark matter in never before seen detail, down to a scale of 30,000 light-years. The observed distribution fluctuations provide better constraints on the nature of dark matter.

Biology: Marine Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: Nature Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geography Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: General
Published

Fossil spines reveal deep sea's past      (via sciencedaily.com)     Original source 

Right at the bottom of the deep sea, the first very simple forms of life on earth probably emerged a long time ago. Today, the deep sea is known for its bizarre fauna. Intensive research is being conducted into how the number of species living on the sea floor have changed in the meantime. Some theories say that the ecosystems of the deep sea have emerged again and again after multiple mass extinctions and oceanic upheavals. Today's life in the deep sea would thus be comparatively young in the history of the Earth. But there is increasing evidence that parts of this world are much older than previously thought.

Anthropology: Early Humans Anthropology: General Biology: Evolutionary Ecology: Animals Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

Human shoulders and elbows first evolved as brakes for climbing apes      (via sciencedaily.com)     Original source 

Researchers report that the flexible shoulders and elbows that allow us to throw a football or reach a high shelf may have evolved as a natural braking system that let our primate ancestors get out of trees without dying. The researchers used sports-analysis software to compare the climbing movements of chimpanzees and small monkeys called mangabeys. While the animals climb up trees similarly, the researchers found that the shallow, rounded shoulder joints and shortened elbow bones that chimps have -- similar to humans -- allow them to fully extend their arms above their heads when climbing down, holding onto branches like a person going down a ladder to support their greater weight. When early humans left forests for the grassy savanna, these versatile appendages would have been essential for gathering food and using tools for hunting and defense. The findings are among the first to identify the significance of 'downclimbing' in the evolution of apes and early humans.

Offbeat: General Offbeat: Space Space: Astronomy Space: General Space: Structures and Features Space: The Solar System
Published

Scientists detect and validate the longest-period exoplanet found with TESS      (via sciencedaily.com) 

Scientists have detected and validated two of the longest-period exoplanets found by TESS to date. These long period large exoplanets orbit a K dwarf star and belong to a class of planets known as warm Jupiters, which have orbital periods of 10-200 days and are at least six times Earth's radius. This recent discovery offers exciting research opportunities for the future of finding long-period planets that resemble those in our own solar system.