Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Environmental: Wildfires, Geoscience: Geology
Published A mechanistic and probabilistic method for predicting wildfires


In the event of dry weather and high winds, power system-ignited incidents are more likely to develop into wildfires. The risk is greater if vegetation is nearby. A new study provides the methodology for predicting at what point during a high wind storm, powerline ignition is likely.
Published Changing landscapes alter disease-scapes


A new study has?highlighted?how and when?changes to the environment result in?animal-borne disease?thresholds?being breeched, allowing for?a?better understanding and?increased?capacity to?predict?the?risk of?transmissions.
Published The world's atmospheric rivers now have an intensity ranking like hurricanes


Atmospheric rivers, which are long, narrow bands of water vapor, are becoming more intense and frequent with climate change. A new study demonstrates that a recently developed scale for atmospheric river intensity (akin to the hurricane scale) can be used to rank atmospheric rivers and identify hotspots of the most intense atmospheric rivers not only along the U.S. West Coast but also worldwide.
Published Life in the smoke of underwater volcanoes


Disconnected from the energy of the sun, the permanently ice-covered Arctic deep sea receives miniscule amounts of organic matter that sustains life. Bacteria which can harvest the energy released from submarine hydrothermal sources could thus have an advantage. Scientists found bacteria uniquely adapted to this geo-energy floating in deep-sea waters. They describe the role of these bacteria for biogeochemical cycling in the ocean.
Published A pool at Yellowstone is a thumping thermometer


Doublet Pool's regular thumping is more than just an interesting tourist attraction. A new study shows that the interval between episodes of thumping reflects the amount of energy heating the pool at the bottom, as well as in indication of how much heat is being lost through the surface. Doublet Pool, the authors found, is Yellowstone's thumping thermometer.
Published Smoke particles from wildfires can erode the ozone layer


A new study finds that smoke particles in the stratosphere can trigger chemical reactions that erode the ozone layer -- and that smoke particles from Australian wildfires widened the ozone hole by 10 percent in 2020.
Published To help dry forests, fire needs to be just the right intensity, and happen more than once


Research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect -- unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn't very good at helping forest landscapes return to their historical, more fire-tolerant conditions.
Published Gas monitoring at volcanic fields outside Naples, Italy, exposes multiple sources of carbon dioxide emissions


The Phlegraean volcanic fields just west of Naples, Italy, are among the top eight emitters of volcanic carbon dioxide in the world. Since 2005, the Solfatara crater -- one of many circular depressions in the landscape left by a long history of eruptions --has been emitting increased volumes of gas. Today it emits 4,000-5,000 tons of carbon dioxide each day, equivalent to the emissions from burning ~500,000 gallons of gasoline. Researchers estimate that as much as 20%--40% of the current carbon dioxide emissions are from the dissolution of calcite in the rocks, while 60%--80% is from underground magma.
Published Mineral particles and their role in oxygenating the Earth's atmosphere


Mineral particles played a key role in raising oxygen levels in the Earth's atmosphere billions of years ago, with major implications for the way intelligent life later evolved, according to new research.
Published Mississippi River Delta study reveals which human actions contribute to land loss


Scientists reveal new information about the role humans have played in large-scale land loss in the Mississippi River Delta -- crucial information in determining solutions to the crisis.
Published Most detailed geological model reveals Earth's past 100 million years


Previous models of Earth's recent (100 million years) geomorphology have been patchy at best. For the first time a detailed continuous model of the Earth's landscape evolution is presented, with potential for understanding long-term climate and biological development.
Published Wildfires in 2021 emitted a record-breaking amount of carbon dioxide


Carbon dioxide emissions from wildfires, which have been gradually increasing since 2000, spiked drastically to a record high in 2021, according to an international team of researchers.
Published Robot provides unprecedented views below Antarctic ice shelf


With the help of an underwater robot, known as Icefin, a U.S.- New Zealand research team has obtained an unprecedented look inside a crevasse at Kamb Ice Stream -- revealing more than a century of geological processes beneath the Antarctic ice.
Published New study could help pinpoint hidden helium gas fields -- and avert a global supply crisis


Helium -- essential for many medical and industrial processes -- is in critically short supply worldwide. Production is also associated with significant carbon emissions, contributing to climate change. This study provides a new concept in gas field formation to explain why, in rare places, helium accumulates naturally in high concentrations just beneath the Earth's surface. The findings could help locate new reservoirs of carbon-free helium -- and potentially also hydrogen.
Published Experts demand fire safety policy change over health impact of widely used flame retardants


Leading environmental health experts have called for a comprehensive review of the UK's fire safety regulations, with a focus on the environmental and health risks of current chemical flame retardants.
Published Climate trends in the west, today and 11,000 years ago


What we think of as the classic West Coast climate began just about 4,000 years ago, finds a study on climate trends of the Holocene era.
Published Mysteries of the Earth: Researchers predict how fast ancient magma ocean solidified


Previous research estimated that it took hundreds of million years for the ancient Earth's magma ocean to solidify, but new research narrows these large uncertainties down to less than just a couple of million years.
Published Ancient proteins offer new clues about origin of life on Earth



By simulating early Earth conditions in the lab, researchers have found that without specific amino acids, ancient proteins would not have known how to evolve into everything alive on the planet today -- including plants, animals, and humans.
Published Early Cretaceous shift in the global carbon cycle affected both land and sea


Geologists doing fieldwork in southeastern Utah's Cedar Mountain Formation found carbon isotope evidence that the site, though on land, experienced the same early Cretaceous carbon-cycle change recorded in marine sedimentary rocks in Europe. This ancient carbon-cycle phenomenon, known as the 'Weissert Event' was driven by large, sustained volcanic eruptions in the Southern Hemisphere that greatly increased carbon dioxide levels in the atmosphere and produced significant greenhouse climate effects over a prolonged time.
Published Deep earthquakes could reveal secrets of the Earth's mantle


A new study suggests there may be a layer of surprisingly fluid rock ringing the Earth, at the very bottom of the upper mantle.