Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Geoscience: Geochemistry
Published Shape and depth of ocean floor profoundly influence how carbon is stored there



The movement of carbon between the atmosphere, oceans and continents -- or carbon cycle -- regulates Earth's climate, with the ocean playing a major role in carbon sequestration. A new study finds that the shape and depth of the ocean floor explain up to 50% of the changes in depth at which carbon has been sequestered there over the past 80 million years. While these changes have been previously attributed to other causes, the new finding could inform ongoing efforts to combat climate change through marine carbon sequestration.
Published Altered carbon points toward sustainable manufacturing



Researchers develop a vastly more productive way to convert carbon dioxide into useful materials and compounds.
Published Thawing permafrost: Not a climate tipping element, but nevertheless far-reaching impacts



Permafrost soils store large quantities of organic carbon and are often portrayed as a critical tipping element in the Earth system, which, once global warming has reached a certain level, suddenly and globally collapses. Yet this image of a ticking timebomb, one that remains relatively quiet until, at a certain level of warming, it goes off, is a controversial one among the research community. Based on the scientific data currently available, the image is deceptive, as an international team has shown in a recently released study. According to their findings, there is no single global tipping point; rather, there are numerous local and regional ones, which 'tip' at different times, producing cumulative effects and causing the permafrost to thaw in step with climate change.
Published Crucial shift in River Nile's evolution during ancient Egypt discovered



Researchers have explored how the River Nile evolved over the past 11,500 years and how changes in its geography could have helped shape the fortunes of ancient Egyptian civilization. Research reveals a major shift in the Nile around four thousand years ago, after which the floodplain in the Nile Valley around Luxor greatly expanded.
Published Fungus breaks down ocean plastic



A fungus living in the sea can break down the plastic polyethylene, provided it has first been exposed to UV radiation from sunlight. Researchers expect that many more plastic degrading fungi are living in deeper parts of the ocean.
Published Fresh findings: Earliest evidence of life-bringing freshwater on Earth



New research has found evidence that fresh water on Earth, which is essential for life, appeared about four billion years ago -- five hundred million years earlier than previously thought.
Published Kinship and ancestry of the Celts in Baden-Württemberg, Germany



The Celtic culture of the pre-Roman Iron Age in Western and Central Europe has left numerous traces to this day, not least in the form of enormous burial mounds and spectacular archaeological artifacts. Despite this rich legacy, much about this civilization remains hidden from us.
Published Mussels downstream of wastewater treatment plant contain radium, study reports



Burrowed into streambeds and rarely moving for their decades-long lifespans, freshwater mussels are biomonitors, meaning they indicate how clean their environment is, according to researchers. As the bivalves feed on organic matter and filter the water around them, their inner tissues and hard shells begin to reflect whatever is in their environment -- including radioactive particles.
Published Could the world famous Roman Baths help scientists counter the challenge of antibiotic resistance?



A new study has uncovered a diverse array of microorganisms within the hot waters of the Roman Baths, regularly listed among the UK's most popular tourist attractions. Tests showed 15 of the isolated bacteria -- including examples of Proteobacteria and Firmicutes -- displayed varying levels of inhibition against human pathogens including E.coli, Staphylococcus Aureus and Shigella flexneri.
Published Fjords are effective carbon traps regardless of oxygen levels



The fjords on Sweden's west coast act as effective carbon traps regardless of whether the bottom water is oxygen-rich or not.
Published New coral disease forecasting system



Research has led to a new tool for forecasting coral disease that could help conservationists step in at the right times with key interventions. Ecological forecasts are critical tools for conserving and managing marine ecosystems, but few forecasting systems can account for the wide range of ecological complexities in near-real-time.
Published People are altering decomposition rates in waterways



Humans may be accelerating the rate at which organic matter decomposes in rivers and streams on a global scale, according to a new study. That could pose a threat to biodiversity in waterways around the world and increase the amount of carbon in Earth's atmosphere, potentially exacerbating climate change. The study is the first to combine a global experiment and predictive modeling to illustrate how human impacts to waterways may contribute to the global climate crisis.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published Antibiotic pollution disrupts the gut microbiome and blocks memory in aquatic snails



Antibiotics prevent snails from forming new memories by disrupting their gut microbiome -- the community of beneficial bacteria found in their guts.
Published Researchers expose new symbiosis origin theories, identify experimental systems for plant life



Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.
Published Orchids support seedlings through 'parental nurture' via shared underground fungal networks



Orchid plants nurture their seedlings via an underground fungal network, new research has revealed.
Published Biobased building materials less sustainable than concrete in South Africa, experts find



Scientists have discovered that mycelium composites, biobased materials made from fungi and agricultural residues, can have a greater environmental impact than conventional fossil-fuel-based materials due to the high amount of electricity involved in their production.
Published Study suggests 'biodegradable' teabags don't readily deteriorate in the environment and can adversely affect terrestrial species



New research looked at commonly available teabags made using three different compositions of polylactic acid (PLA), which is derived from sources such as corn starch or sugar cane. The teabags were buried in soil for seven months, and a range of techniques were then used to assess whether -- and to what extent -- they had deteriorated. The results showed that teabags made solely from PLA remained completely intact. However, the two types of teabags made from a combination of cellulose and PLA broke down into smaller pieces, losing between 60% and 80% of their overall mass and with the PLA component remaining.
Published Investigating the origin of circatidal rhythms in freshwater snails



While most organisms have biological clocks synchronized with the day-night cycle (circadian rhythms), marine animals in tidal areas have also developed circatidal rhythms to align with the tidal cycle. Comparing the activity and genetic expression of snails from tidal and non-tidal areas, researchers demonstrate that circatidal rhythms develop as snails adapt to tidal environments. These findings highlight the flexibility of biological clocks, enabling organisms to adjust their rhythms according to the environment.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.