Showing 20 articles starting at article 601
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Geoscience: Landslides
Published Cathode active materials for lithium-ion batteries could be produced at low temperatures



Layered lithium cobalt oxide, a key component of lithium-ion batteries, has been synthesized at temperatures as low as 300°C and durations as short as 30 minutes.
Published Researchers create the most water-repellent surface ever



A revised method to create hydrophobic surfaces has implications for any technology where water meets a solid surface, from optics and microfluidics to cooking.
Published Plant-based materials give 'life' to tiny soft robots



A team of researchers has created smart, advanced materials that will be the building blocks for a future generation of soft medical microrobots. These tiny robots have the potential to conduct medical procedures, such as biopsy, and cell and tissue transport, in a minimally invasive fashion.
Published Mimics human tissue, fights bacteria: New biomaterial hits the sweet spot



A new lab-made substance mimics human tissue and could reduce or replace the use of animal-derived materials in biomedical research.
Published Chemists, engineers craft adjustable arrays of microscopic lenses



A team has created minuscule lenses that it can expand or contract in mere seconds -- modifying their magnification, focal length and other optical properties in the process. That on-the-fly adaptability bodes well for the design's use in micro-projection systems and even the culturing of cells, the researchers said.
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published A miniature magnetic resonance imager made of diamond



The development of tumors begins with miniscule changes within the body's cells; ion diffusion at the smallest scales is decisive in the performance of batteries. Until now the resolution of conventional imaging methods has not been high enough to represent these processes in detail. A research team has now developed diamond quantum sensors which can be used to improve resolution in magnetic imaging.
Published Cobalt-free battery for cleaner, greener power



High-capacity and reliable rechargeable batteries are a critical component of many devices and even modes of transport. They play a key role in the shift to a greener world. A wide variety of elements are used in their production, including cobalt, the production of which contributes to some environmental, economic, and social issues. A team now presents a viable alternative to cobalt which in some ways can outperform state-of-the-art battery chemistry. It also survives a large number of recharge cycles, and the underlying theory can be applied to other problems.
Published Using computer algorithms to find molecular adaptations to improve COVID-19 drugs



A new study focuses on using computer algorithms to generate adaptations to molecules in compounds for existing and potential medications that can improve those molecules' ability to bind to the main protease, a protein-based enzyme that breaks down complex proteins, in SARS-CoV-2, the virus that causes COVID-19.
Published Researchers unveil fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries



A research team has succeeded in developing a non-flammable gel polymer electrolyte (GPE) that is set to revolutionize the safety of lithium-ion batteries (LIBs) by mitigating the risks of thermal runaway and fire incidents.
Published New recipe for efficient, environmentally friendly battery recycling



Researchers are now presenting a new and efficient way to recycle metals from spent electric car batteries. The method allows recovery of 100 per cent of the aluminum and 98 per cent of the lithium in electric car batteries. At the same time, the loss of valuable raw materials such as nickel, cobalt and manganese is minimized. No expensive or harmful chemicals are required in the process because the researchers use oxalic acid -- an organic acid that can be found in the plant kingdom.
Published Art with DNA -- Digitally creating 16 million colors by chemistry



The DNA double helix is composed of two DNA molecules whose sequences are complementary to each other. The stability of the duplex can be fine-tuned in the lab by controlling the amount and location of imperfect complementary sequences. Fluorescent markers bound to one of the matching DNA strands make the duplex visible, and fluorescence intensity increases with increasing duplex stability. Now, researchers have succeeded in creating fluorescent duplexes that can generate any of 16 million colors -- a work that surpasses the previous 256 colors limitation. This very large palette can be used to 'paint' with DNA and to accurately reproduce any digital image on a miniature 2D surface with 24-bit color depth.
Published World may have crossed solar power 'tipping point'



The world may have crossed a 'tipping point' that will inevitably make solar power our main source of energy, new research suggests.
Published Cocoa pods -- a source of chocolate, and potentially, flame retardants



As Halloween approaches, so too does the anticipation of a trick-or-treating stash filled with fun-sized chocolate candy bars. But to satisfy our collective craving for this indulgence, millions of cocoa pods are harvested annually. While the beans and pulp go to make chocolate, their husks are thrown away. Now, researchers show that cocoa pod husks could be a useful starting material for flame retardants.
Published Decontamination method zaps pollutants from soil



A rapid, high-heat electrothermal soil remediation process flushes out both organic pollutants and heavy metals in seconds without damaging soil fertility.
Published Researchers develop organic nanozymes suitable for agricultural use



Nanozymes are synthetic materials that mimic the properties of natural enzymes for applications in biomedicine and chemical engineering. They are generally considered too toxic and expensive for use in agriculture and food science. Now, researchers have developed a nanozyme that is organic, non-toxic, environmentally friendly, and cost effective.
Published New polymer membranes, AI predictions could dramatically reduce energy, water use in oil refining



Researchers describe a new kind of polymer membrane they created that could reshape how refineries process crude oil, dramatically reducing the energy and water required while extracting even more useful materials. The team also created artificial intelligence tools to predict the performance of these kinds of membranes, which could accelerate development of new ones.
Published Cell-friendly bioprinting at high fidelity enhances its medical applicability



Researchers have developed a cell-friendly means of bioprinting at high fidelity. By successive injection of a cell-based ink and a printing support, the ink solidified into defined geometries, even into the shape of a human nose. Printed cells remained viable for at least two weeks. This work is an important milestone toward developing lab-grown tissues and organs, and eventually advancing regenerative medicine as well as animal-free drug safety testing.
Published Novel catalyst for green production of fine chemicals and pharmaceuticals



Scientists have developed an innovative catalyst that achieves a significantly lower carbon footprint, paving the way for greener chemical and pharmaceutical manufacturing processes.
Published An electrical switch to control chemical reactions



New pharmaceuticals, cleaner fuels, biodegradable plastics: in order to meet society's needs, chemists have to develop new synthesis methods to obtain new products that do not exist in their natural state. A research group has discovered how to use an external electric field to control and accelerate a chemical reaction, like a 'switch'. This work could have a considerable impact on the development of new molecules, enabling not only more environmentally friendly synthesis, but also very simple external control of a chemical reaction.