Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Geoscience: Geography
Published New 'time travel' study reveals future impact of climate change on coastal marshes



A new study offers a glimpse into the possible impact of climate change on coastal wetlands 50 years or longer into the future. Scientists are usually forced to rely on computer models to project the long-term effects of rising seas, but an unexpected set of circumstances enabled a real-world experiment along the Gulf Coast.
Published The role of jellies as a food source in the Arctic winter



The Arctic is changing rapidly due to climate change. It is not only affected by increasing surface temperatures, but also by warm water from the Atlantic, which is flowing in more and more -- changing the structures and functions of the ecosystem as it also leads to species from warmer regions, such as sea jellies (also known as jellyfish) arriving in the Arctic. Using DNA metabarcoding, researchers have now been able to demonstrate that these jellyfish serve as food for amphipods on Svalbard during the polar night and thus play a greater role in Arctic food webs than previously assumed.
Published Cold-water coral traps itself on mountains in the deep sea



Corals searching for food in the cold and dark waters of the deep sea are building higher and higher mountains to get closer to the source of their food. But in doing so, they may find themselves trapped when the climate changes.
Published Is the Amazon forest approaching a tipping point?



Global warming may be interacting with regional rainfall and deforestation to accelerate forest loss in the Amazon, pushing it towards partial or total collapse. New research has identified the potential thresholds of these stressors, showing where their combined effects could produce a 'tipping point' -- in which the forest is so fragile that just a small disturbance could cause an abrupt shift in the state of the ecosystem.
Published Biomanufacturing using chemically synthesized sugars enables sustainable supply of sugar without competing with food



Researchers have succeeded in biomanufacturing from chemically synthesized sugar for the first time in the world. With refinement of this technology, one can envision a future society in which the sugar required for biomanufacturing can be obtained 'anytime, anywhere, and at high rate'. In the future, biomanufacturing using chemically synthesized sugar is expected to be a game changer in the biotechnology field -- including the production of biochemicals, biofuels, and food, where sugar is an essential raw material -- ultimately leading to the creation of a new bio-industry.
Published CRISPR-copies: New tool accelerates and optimizes genome editing



Researchers are further improving CRISPR's versatility to engineer new grasses and yeasts for biochemical production.
Published Greetings from the island of enhanced stability: The quest for the limit of the periodic table



Since the turn of the century, six new chemical elements have been discovered and subsequently added to the periodic table of elements, the very icon of chemistry. These new elements have high atomic numbers up to 118 and are significantly heavier than uranium, the element with the highest atomic number (92) found in larger quantities on Earth. This raises questions such as how many more of these superheavy species are waiting to be discovered, where -- if at all -- is a fundamental limit in the creation of these elements, and what are the characteristics of the so-called island of enhanced stability. In a recent review, experts in theoretical and experimental chemistry and physics of the heaviest elements and their nuclei summarize the major challenges and offer a fresh view on new superheavy elements and the limit of the periodic table.
Published Frequent marine heatwaves in the Arctic Ocean will be the norm



Marine heatwaves will become a regular occurrence in the Arctic in the near future and are a product of higher anthropogenic greenhouse-gas emissions -- as shown in a new study.
Published Greenland's ice sheet is melting -- and being replaced by vegetation



An estimated 11,000 sq miles or 28,707 sq kilometers of Greenland's ice sheet and glaciers have melted over the last three decades, according to a major analysis of historic satellite records.
Published Exploring the effect of ring closing on fluorescence of supramolecular polymers



The properties of supramolecular polymers are dictated by the self-assembled state of the molecules. However, not much is known about the impact of morphologies on the properties of nano- and mesoscopic-scale polymeric assemblies. Recently, a research team demonstrated how terminus-free toroids and random coils derived from the same luminescent molecule show different photophysical properties. The team also presented a novel method for purifying the toroidal structure.
Published Satellites unveil the size and nature of the world's coral reefs



New research has shown there is more coral reef area across the globe than previously thought, with detailed satellite mapping helping to conserve these vital ecosystems.
Published Can hydrogels help mend a broken heart?



You can mend a broken heart this valentine s day now that researchers invented a new hydrogel that can be used to heal damaged heart tissue and improve cancer treatments.
Published Researchers studying ocean transform faults, describe a previously unknown part of the geological carbon cycle



This study reports widespread mineral carbonation of mantle rocks in an oceanic transform fueled by magmatic degassing of CO2. The findings describe a previously unknown part of the geological carbon cycle in transform faults that represent one of the three principal plate boundaries on Earth. The confluence of tectonically exhumed mantle rocks and CO2-rich alkaline basalt formed through limited extents of melting characteristic of the St. Paul's transform faults may be a pervasive feature at oceanic transform faults in general. Because transform faults have not been accounted for in previous estimates of global geological CO2 fluxes, the mass transfer of magmatic CO2 to the altered oceanic mantle and seawater may be larger than previously thought.
Published Global deforestation leads to more mercury pollution



Researchers find deforestation accounts for about 10 percent of global human-made mercury emissions. While it cannot be the only solution, they suggest reforestation could increase global mercury uptake by about 5 percent.
Published Not only in information technology: Restart also works in chemical simulations



Scientists have discovered that a known practice in information technology can also be applied to chemistry. Researchers found that to enhance the sampling in chemical simulations, all you need to do is stop and restart.
Published Key advance for capturing carbon from the air



A chemical element so visually striking that it was named for a goddess shows a 'Goldilocks' level of reactivity -- neither too much nor too little -- that makes it a strong candidate as a carbon scrubbing tool.
Published When the global climate has the hiccups



Climate changes usually happens over long periods of time, but during the last glacial period, extreme fluctuations in temperature occurred within just a few years. Researchers have now been able to prove the phenomenon also occurred during the penultimate glacial period.
Published Sensors made from 'frozen smoke' can detect toxic formaldehyde in homes and offices



Researchers have developed a sensor made from 'frozen smoke' that uses artificial intelligence techniques to detect formaldehyde in real time at concentrations as low as eight parts per billion, far beyond the sensitivity of most indoor air quality sensors.
Published Conversion process turns greenhouse gas into ethylene



Engineers have created a more efficient way of converting carbon dioxide into valuable products while simultaneously addressing climate change.
Published Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets



Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.