Showing 20 articles starting at article 1141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Geoscience: Geochemistry
Published A step closer to digitizing the sense of smell: Model describes odors better than human panelists


A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Newly discovered fungus helps destroy a harmful food toxin



Patulin is a harmful mycotoxin produced by fungi typically found in damaged fruits, including apples, pears, and grapes. In a recent breakthrough, researchers identified a new filamentous fungal strain that can degrade patulin by transforming it into less toxic substances. Their findings provide important insights into the degradation mechanisms for patulin found in nature, and can lead to new ways of controlling patulin toxicity in our food supplies.
Published Two out of three volcanoes are little-known. How to predict their eruptions?



What is the risk of a volcano erupting? To answer this question, scientists need information about its underlying internal structure. However, gathering this data can take several years of fieldwork, analyses and monitoring, which explains why only 30% of active volcanoes are currently well documented. A team has developed a method for rapidly obtaining valuable information. It is based on three parameters: the height of the volcano, the thickness of the layer of rock separating the volcano's reservoir from the surface, and the average chemical composition of the magma.
Published Tiny mineral inclusions picture the chemical exchange between Earth's mantle and atmosphere



Using synchrotron techniques, scientists have unveiled important information on The Great Oxidation Event by studying apatite inclusions in zircon crystals from old magmas.
Published Arctic soil methane consumption may be larger than previously thought and increases in a drier climate



A recent study finds that Arctic soil methane uptake may be larger than previously thought, and that methane uptake increases under dry conditions and with availability of labile carbon substrates.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition


Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published Direct formation of sulfuric acid in the atmosphere


In the atmosphere, gaseous sulfuric acid can form particles that influence the physical properties of clouds. Thus, the formation of sulfuric acid in the gas phase directly affects the radiative forcing and Earth's climate. In addition to the known formation from sulfur dioxide, researchers have now been able to demonstrate through experiments that there is another formation pathway that has been speculated about for decades. Sulfuric acid in the atmosphere can also be formed directly by the oxidation of organic sulfur compounds. This new production pathway can be responsible for up to half of the gaseous sulfuric acid formation over the oceans and is thus of high importance for climate projections -- especially over the oceans of the Southern Hemisphere.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox


Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Enhanced chemical weathering: A solution to the climate crisis?



Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published How urea may have been the gateway to life



Urea reacts extremely quickly under the conditions that existed when our planet was newly formed. This new insight furthers our understanding of how life on Earth might have begun.
Published There may be good news about the oceans in a globally warmed world



An analysis of oxygen levels in Earth's oceans may provide some rare, good news about the health of the seas in a future, globally warmed world. A study analyzing ocean sediment shows that ocean oxygen levels in a key area were higher during the Miocene warm period, some 16 million years ago when the Earth's temperature was hotter than it is today.
Published Research in a place where geological processes happen before your eyes



Taiwan experiences some of the world's fastest rates of mountain building -- they are growing at a faster rate than our fingernails grow in a year. The mountains also see frequent and significant earthquakes, the region experiences about four typhoons per year on average, and in some places, it receives upwards of several meters of rain annually.
Published Don't wait, desalinate: A new approach to water purification



A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.
Published Act now to prevent uncontrolled rise in carbon footprint of computational science



Scientists have set out principles for how computational science -- which powers discoveries from unveiling the mysteries of the universe to developing treatments to fight cancer to improving our understanding of the human genome, but can have a substantial carbon footprint -- can be made more environmentally sustainable.
Published Study of Earth's stratosphere reduces uncertainty in future climate change



New research reduces uncertainty in future climate change linked to the stratosphere, with important implications for life on Earth. A significant source of uncertainty relates to future changes to water vapor in the stratosphere, an extremely dry region of the atmosphere 15--50 km above the Earth's surface. Future increases in water vapor here risk amplifying climate change and slowing down the recovery of the ozone layer, which protects life on Earth from harmful solar ultraviolet radiation.