Showing 20 articles starting at article 761
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Chemistry: General
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published A step closer to digitizing the sense of smell: Model describes odors better than human panelists


A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition


Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published Direct formation of sulfuric acid in the atmosphere


In the atmosphere, gaseous sulfuric acid can form particles that influence the physical properties of clouds. Thus, the formation of sulfuric acid in the gas phase directly affects the radiative forcing and Earth's climate. In addition to the known formation from sulfur dioxide, researchers have now been able to demonstrate through experiments that there is another formation pathway that has been speculated about for decades. Sulfuric acid in the atmosphere can also be formed directly by the oxidation of organic sulfur compounds. This new production pathway can be responsible for up to half of the gaseous sulfuric acid formation over the oceans and is thus of high importance for climate projections -- especially over the oceans of the Southern Hemisphere.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published Overcoming the challenges to synthesising iron--sulfur proteins outside the glovebox


Iron--sulfur (Fe--S) proteins, essential to all life forms, are difficult to synthesise due to the complicated molecular machinery involved and sensitivity of Fe--S clusters to oxygen. In a new study, a team of researchers devised an innovative protocol for synthesising mature Fe--S proteins, by bringing together a recombinant sulfur assimilation (SUF) system and an oxygen-scavenging system, thereby, paving the way for new technologies and a better understanding of the evolution of life.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Enhanced chemical weathering: A solution to the climate crisis?



Could blending of crushed rock with arable soil lower global temperatures? Researchers study global warming events from 40 and 56 million years ago to find answers.
Published Malaysian rock art found to depict elite -- Indigenous conflict



Researchers have dated drawings of Gua Sireh Cave in Sarawak, uncovering a sad story of conflict in the process.
Published Spear thrower weapon use by prehistoric females equalized the division of labor while hunting



A new study has demonstrated that the atlatl (i.e. spear thrower) functions as an 'equalizer', a finding which supports women's potential active role as prehistoric hunters.
Published Ancient metal cauldrons give us clues about what people ate in the Bronze Age



Archaeologists have long been drawing conclusions about how ancient tools were used by the people who crafted them based on written records and context clues. But with dietary practices, they have had to make assumptions about what was eaten and how it was prepared. A new study analyzed protein residues from ancient cooking cauldrons and found that the people of Caucasus ate deer, sheep, goats, and members of the cow family during the Maykop period (3700--2900 BCE).
Published Unveiling Japan's ancient practice of cranial modification: The case of the Hirota people in Tanegashima



Cranial modification is a form of body alteration where the head is pressed or bound to permanently deform the skull. The practice has been reported across various cultures throughout history. Researchers report that the Hirota people -- who lived on the southern Japanese island of Tanegashima between the 3rd to 7th century CE -- also conducted cranial modification, with indication that both males and females performed the practice.
Published New research links early Europeans' cultural and genetic development over several thousand years



A new DNA study has nuanced the picture of how different groups intermingled during the European Stone Age, but also how certain groups of people were actually isolated. Researchers produced new genetic data from 56 Central and Eastern European individuals from the Stone Age.
Published New insights into the origin of the Indo-European languages



An international team of linguists and geneticists has achieved a significant breakthrough in our understanding of the origins of Indo-European, a family of languages spoken by nearly half of the world's population.
Published Giant stone artefacts found on rare Ice Age site in Kent, UK



Researchers have discovered some of the largest early prehistoric stone tools in Britain.
Published Don't wait, desalinate: A new approach to water purification



A water purification system separates out salt and other unnecessary particles with an electrified version of dialysis. Successfully applied to wastewater with planned expansion into rivers and seas, the method saves money and saps 90% less energy than its counterparts.
Published First detection of crucial carbon molecule



Scientists detect a new carbon compound in space for the first time. Known as methyl cation (pronounced cat-eye-on) (CH3+), the molecule is important because it aids the formation of more complex carbon-based molecules. Methyl cation was detected in a young star system, with a protoplanetary disk, known as d203-506, which is located about 1,350 light-years away in the Orion Nebula.