Showing 20 articles starting at article 861
< Previous 20 articles Next 20 articles >
Categories: Anthropology: Cultures, Chemistry: General
Published Is the ocean a solution for ushering in the era of environmentally friendly energy?



Researchers confirm the superiority of seawater batteries that use chelating agents.
Published How spheres become worms



A previously unknown form of hydrogel formation has been elucidated: chemists found unusual interactions between polymers.
Published Chemists tackle the tough challenge of recycling mixed plastics



Polymer chemists have been finding ways to tackle the environmental problems humans have created with plastics waste. Now, a team has come up with fundamental new chemistry that seeds a creative solution to the challenge of recycling mixed-use plastics.
Published New chemistry can extract virgin-grade materials from wind turbine blades in one process



Researchers have developed a chemical process that can disassemble the epoxy composite of wind turbine blades and simultaneously extract intact glass fibers as well as one of the epoxy resin's original building blocks in a high quality. The recovered materials could potentially be used in the production of new blades.
Published CO2 recycling: What is the role of the electrolyte?



The greenhouse gas carbon dioxide can be converted into useful hydrocarbons by electrolysis. The design of the electrolysis cell is crucial in this process. The so-called zero-gap cell is particularly suitable for industrial processes. But there are still problems: The cathodes clog up quickly.
Published Searching for ancient bears in an Alaskan cave led to an important human discovery



Genetic analysis links 3,000-year-old bone found in cave to modern Alaska Natives.
Published Researchers team up with national lab for innovative look at copper reactions



Researchers are working to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Long distance voyaging among the Pacific Islands



An international team of researchers has used geochemical fingerprinting to reconstruct long-distance voyages between central and western Pacific Islands during the last millennium A.D.
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.
Published Synthetic biology meets fashion in engineered silk



Engineers developed a method to create synthetic spider silk at high yields while retaining strength and toughness using mussel foot proteins.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Nanoparticles provoke immune response against tumors but avoid side effects



Researchers find that when immunostimulatory drugs called imidazoquinolines are delivered using specialized bottlebrush nanoparticles, the drugs provoke the immune system to attack tumors while eliminating the side effects that occur when the drugs are given on their own.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Stronger paper bags, reused repeatedly then recycled for biofuel could be future



As the world searches for ways to reduce the use of plastics such as single-use plastic bags, a novel study demonstrates a process to make paper bags stronger -- especially when they get wet -- to make them a more viable alternative.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published Tiny biobattery with 100-year shelf life runs on bacteria



A tiny biobattery that could still work after 100 years has been developed.
Published Chemists propose ultrathin material for doubling solar cell efficiency



Researchers are studying radical new ways to improve solar power and provide more options for the industry to explore. Chemists are proposing to make solar cells using not silicon, but an abundantly available natural material called molybdenum disulfide. Using a creative combination of photoelectrochemical and spectroscopic techniques, the researchers conducted a series of experiments showing that extremely thin films of molybdenum disulfide display unprecedented charge carrier properties that could someday drastically improve solar technologies.
Published Researchers develop carbon-negative concrete



A viable formula for a carbon-negative, environmentally friendly concrete that is nearly as strong as regular concrete has been developed. In a proof-of-concept work, the researchers infused regular cement with environmentally friendly biochar, a type of charcoal made from organic waste, that had been strengthened beforehand with concrete wastewater. The biochar was able to suck up to 23% of its weight in carbon dioxide from the air while still reaching a strength comparable to ordinary cement. The research could significantly reduce carbon emissions of the concrete industry, which is one of the most energy- and carbon-intensive of all manufacturing industries.
Published Recovering rare earth elements in environmental water



A research group has succeeded in selectively recovering trace rare earth elements in synthetic seawater and environmental water, such as hot spring water, using baker's yeast with a phosphate group added. The phosphorylated yeast is expected to be utilized as a material for recovering useful metals and removing toxic metals, thereby contributing to the realization of a metal resource-circulating society.
Published Microwaves advance solar-cell production and recycling



New technology advances solar-cell production and recycling. New microwave technology will improve the manufacture of solar cells and make them easier to recycle.