Showing 20 articles starting at article 1021
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Chemistry: General
Published High-energy-density, long life-cycle rechargeable lithium metal batteries


Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.
Published Nitrate can release uranium into groundwater


A team has experimentally confirmed that nitrate, a compound common in fertilizers and animal waste, can help transport naturally occurring uranium from the underground to groundwater. The new research backs a previous study showing that aquifers contaminated with high levels of nitrate -- including the High Plains Aquifer residing beneath Nebraska -- also contain uranium concentrations far exceeding a threshold set by the Environmental Protection Agency. Uranium concentrations above that EPA threshold have been shown to cause kidney damage in humans, especially when regularly consumed via drinking water.
Published Recycling: Researchers separate cotton from polyester in blended fabric


Researchers found they could separate blended cotton and polyester fabric using enzymes -- nature's tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric's component materials, thereby reducing textile waste.
Published Genome research: Origin and evolution of vine


Cultivation and growth of grapevines have strongly influenced European civilizations, but where the grapevine comes from and how it has spread across the globe has been highly disputed so far. In an extensive genome project, researchers have determined its origin and evolution from the wild vine to today's cultivar by analyzing thousands of vine genomes collected along the Silk Road from China to Western Europe.
Published Can synthetic polymers replace the body's natural proteins?


Scientists developing new biomaterials often try to mimic the body's natural proteins, but a chemist shows that simpler polymers -- based on a handful of plastic building blocks -- also work well. Using AI, her team was able to design polymer mixtures that replicate simple protein functions within biological fluids. The random heteropolymers dissolve and stabilize proteins and can support cells' normal protein-making machinery. The technique could speed the design of materials for biomedical applications.
Published Cans or bottles: What's better for a fresh, stable beer?


The flavor of beer begins to change as soon as it's packaged, prompting a debate among afficionados: Does the beverage stay fresher in a bottle or a can? Now, researchers report that the answer is, well, complicated, and depends on the type of beer. An amber ale stayed fresher in bottles, whereas container choice made much less difference to the stability of an India Pale Ale (IPA).
Published Electronic skin as flexible as crocodile skin


A research team has developed a crocodile-skin-inspired omnidirectionally stretchable pressure sensor.
Published Nano cut-and-sew: New method for chemically tailoring layered nanomaterials could open pathways to designing 2D materials on demand


A new process that lets scientists chemically cut apart and stitch together nanoscopic layers of two-dimensional materials -- like a tailor altering a suit -- could be just the tool for designing the technology of a sustainable energy future. Researchers have developed a method for structurally splitting, editing and reconstituting layered materials, called MAX phases and MXenes, with the potential of producing new materials with very unusual compositions and exceptional properties.
Published New approach to harvesting aerial humidity with organic crystals


Researchers have reported a novel method of harvesting water from naturally occurring sources such as fog and dew.
Published Cyprus's copper deposits created one of the most important trade hubs in the Bronze Age


The coveted metal copper and a sheltered location turned the Cypriot village of Hala Sultan Tekke into one of the most important trade hubs of the Late Bronze Age. Recent excavations confirm the importance of the Bronze Age city in the first period of international trade in the Mediterranean.
Published Modelling superfast processes in organic solar cell material


In organic solar cells, carbon-based polymers convert light into charges that are passed to an acceptor. Scientists have now calculated how this happens by combining molecular dynamics simulations with quantum calculations and have provided theoretical insights to interpret experimental data.
Published Indigenous Ashaninka DNA helps geneticists write new chapters of pre-colonial history in South America


Geneticists have written new chapters in the reconstruction of pre-colonial Americas history after using DNA from the indigenous Ashaninka people from Amazonian Peru. They have discovered previously unexpected levels of genetic variation in this group and uncovered a strong hint that these people were involved in a South-to-North migration that led to the transition from an archaic to ceramic culture in the Caribbean islands.
Published Filming proteins in motion


Proteins are the heavy-lifters of biochemistry. These beefy molecules act as building blocks, receptors, processors, couriers and catalysts. Naturally, scientists have devoted a lot of research to understanding and manipulating proteins.
Published Researchers control the degree of twist in nanostructured particles


Micron-sized 'bow ties,' self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team has shown.
Published Neolithic ceramics reveal dairy processing from milk of multiple species


A new study has found evidence of cheesemaking, using milk from multiple animals in Late Neolithic Poland.
Published Spatial patterns in distribution of galaxies


In an unlikely pairing, a chemist and an astrophysicist applied the tools of statistical mechanics to find similarities in spatial patterns across length scales.
Published Microneedle-based drug delivery technique for plants


The agriculture industry is under pressure to adopt sustainable and precise agricultural practices that enable more efficient use of resources due to worsening environmental conditions resulting from climate change, an ever-expanding human population, limited resources, and a shortage of arable land. As a result, developing delivery systems that efficiently distribute micronutrients, pesticides, and antibiotics in crops is crucial to ensuring high productivity and high-quality produce while minimising resource waste. However, current and standard practices for agrochemical application in plants are inefficient. These practices cause significant detrimental environmental side effects, such as water and soil contamination, biodiversity loss and degraded ecosystems; and public health concerns, such as respiratory problems, chemical exposure and food contamination.
Published Lasers and chemistry reveal how ancient pottery was made -- and how an empire functioned


Peru's first great empire, the Wari, stretched for more than a thousand miles over the Andes Mountains and along the coast from 600-1000 CE. The pottery they left behind gives archaeologists clues as to how the empire functioned. In a new study researchers showed that rather than using 'official' Wari pottery imported from the capital, potters across the empire were creating their own ceramics, decorated to emulate the traditional Wari style. To figure it out, the scientists analyzed the pottery's chemical make-up, with help from laser beams.
Published Switching to hydrogen fuel could prolong the methane problem


Hydrogen is often heralded as the clean fuel of the future, but new research suggests that leaky hydrogen infrastructure could end up increasing atmospheric methane levels, which would cause decades-long climate consequences.
Published 3D internal structure of rechargeable batteries revealed


Researchers have pioneered a technique to observe the 3D internal structure of rechargeable batteries. This opens up a wide range of areas for the new technique from energy storage and chemical engineering to biomedical applications.