Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Chemistry: General
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.
Published Ancient dingo DNA shows modern dingoes share little ancestry with modern dog breeds



A study of ancient dingo DNA revealed that the distribution of modern dingoes across Australia, including those on K'gari (formerly Fraser Island), pre-dates European colonization and interventions like the dingo-proof fence.
Published New extremely fast carbon storage technology



A new way to store carbon captured from the atmosphere works much faster than current methods without the harmful chemical accelerants they require.
Published Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells



Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Ionic liquids: 'Don't shake it'



Chemists have develop innovative ionic liquid synthesis and purification technology.
Published Engineers find a way to protect microbes from extreme conditions



Researchers have now developed a new way to make microbes hardy enough to withstand extreme conditions such as heat and the manufacturing processes used to formulate the microbes into powders or pills for long-term storage.
Published New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications



A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.
Published Chemists synthesize an improved building block for medicines



Research could help drug developers improve the safety profiles of medications and reduce side effects.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Extinct humans survived on the Tibetan plateau for 160,000 years



Bone remains found in a Tibetan cave 3,280 m above sea level indicate an ancient group of humans survived here for many millennia.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published Exploring the chemical space of the exposome: How far have we gone?



Scientists have taken on the daunting challenge of mapping all the chemicals around us. They take inventory of the available science and conclude that currently a real pro-active chemical management is not feasible. To really get a grip on the vast and expanding chemical universe, they advocate the use of machine learning and AI, complementing existing strategies for detecting and identifying all molecules we are exposed to.
Published True scale of carbon impact from long-distance travel revealed



The reality of the climate impact of long-distance passenger travel has been revealed in new research.
Published Layers of carbonate provide insight into the world of the ancient Romans



Archaeologists face a major challenge when they intend to acquire information about buildings or facilities of which only ruins remain. This was a particular challenge for the remnants of the Roman water mills in Barbegal in Southern France, dating back to the 2nd century CE. This unique industrial complex consisted of 16 water wheels placed in parallel rows. Little could at first be deduced about the site from these now scant ruins -- except that the wheels were supplied by an aqueduct that brought water from the surrounding hills. Researchers have now unraveled the history of the mill complex using calcium carbonate deposits that are now stored in the Archaeological Museum of Arles. These deposits had formed towards the end of the roughly 100-year operational life of the Barbegal water mills on the sides and base of the wooden supply system that conveyed the water to the wheels.
Published Novel spectroscopy technique sheds light on NOx reduction



The process that can convert pollution into benign by-products is called selective catalytic reduction, or SCR. Until now, it has been unclear how this reaction actually occurs, and contradictions have long existed between reaction models within the literature. Catalysis researchers used a technology called modulation excitation spectroscopy, or MES, to finally identify the correct pathway.
Published Melanin from cuttlefish ink as a sustainable biomass resource



Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.