Showing 20 articles starting at article 941
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Offbeat: Space
Published Extensive impact of metal mining contamination on rivers and floodplains


A groundbreaking study has provided new insights into the extensive impact of metal mining contamination on rivers and floodplains across the world, with an estimated 23 million people believed to be affected by potentially dangerous concentrations of toxic waste. The study used a new georeferenced global database of 185,000 metal mines compiled by the team alongside a combination of process-based modelling and empirical testing to predict the dispersal of mine waste in river systems to offer a comprehensive understanding of the environmental and health challenges associated with metal mining activities, examining both historical and active mining operations. With the rapid growth of metal mining crucial to the world making the transition to green energy, the study provides governments, mining companies, environmental regulators, and communities impacted by mining operations with a tool to understand the impacts of environmental impact of mining. Ultimately it is hoped that this will make it easier to mitigate the environmental effects of historical and present mining and help to minimise the impacts of future mining development on communities, while also protecting food and water security.
Published New recycling method fights plastic waste


Almost 80% of plastic in the waste stream ends up in landfills or accumulates in the environment. Scientists have now developed a technology that converts a conventionally unrecyclable mixture of plastic waste into useful chemicals, presenting a new strategy in the toolkit to combat global plastic waste.
Published Researchers reveal the origins of zirconium nitride's superior performance


A group of researchers have unraveled the mysteries behind a recently identified material -- zirconium nitride (ZrN) -- that helps power clean energy reactions. Their proposed framework will help future designs for transition metal nitrides, paving a path for generating cleaner energy.
Published One-atom-thick ribbons could improve batteries, solar cells and sensors


Researchers created nanoribbons made of phosphorus and tiny amounts of arsenic, which they found were able to conduct electricity at temperatures above -140 degrees Celsius, while retaining the highly useful properties of the phosphorus-only ribbons.
Published New Mars gravity analysis improves understanding of possible ancient ocean



The first use of a novel method of analyzing Mars' gravitational force supports the idea that the planet once had an extensive northern ocean. In doing so, the method defines the scope of what scientists refer to as theĀ northern Martian paleo-oceanĀ in more detail.
Published Making contact: Researchers wire up individual graphene nanoribbons


Researchers have developed a method of 'wiring up' graphene nanoribbons (GNRs), a class of one-dimensional materials that are of interest in the scaling of microelectronic devices. Using a direct-write scanning tunneling microscopy (STM) based process, the nanometer-scale metal contacts were fabricated on individual GNRs and could control the electronic character of the GNRs. The researchers say that this is the first demonstration of making metal contacts to specific GNRs with certainty and that those contacts induce device functionality needed for transistor function.
Published Tag team of the James Webb Space Telescope and ALMA captures the core of the most distant galaxy protocluster


An international research team has used the James Webb Space Telescope and the Atacama Large Millimeter/submillimeter Array to observe the most distant galaxy protocluster to date, 13.14 billion light-years away. The team has successfully captured the 'core region' of the galaxy protocluster, which corresponds to a metropolitan area with a particularly high number density of galaxies. The team has revealed that many galaxies are concentrated in a small area and that the growth of galaxies is accelerated. Furthermore, the team used simulations to predict the future of the metropolitan area and found that the region will merge into one larger galaxy within tens of millions of years. These results are expected to provide important clues regarding the birth and growth of galaxies.
Published New Si-based photocatalyst enables efficient solar-driven hydrogen production and biomass refinery


A research team has achieved a significant breakthrough in the development of a hybrid silicon photocatalyst.
Published Imaging the smallest atoms provides insights into an enzyme's unusual biochemistry


A team has used neutron crystallography to image all of the atoms in a radical intermediate of a copper amine oxidase enzyme. They disclosed previously unknown details, such as precise conformational changes, that help to explain the enzyme's biochemistry. This work might help researchers engineer enzymes that facilitate unusual chemistry or are highly efficient at room temperature that are useful in chemical industry.
Published Fast-track strain engineering for speedy biomanufacturing


Using engineered microbes as microscopic factories has given the world steady sources of life-saving drugs, revolutionized the food industry, and allowed us to make sustainable versions of valuable chemicals previously made from petroleum. But behind each biomanufactured product on the market today is the investment of years of work and many millions of dollars in research and development funding. Scientists want to help the burgeoning industry reach new heights by accelerating and streamlining the process of engineering microbes to produce important compounds with commercial-ready efficiency.
Published New recipes for origin of life may point way to distant, inhabited planets



Life on a faraway planet -- if it's out there -- might not look anything like life on Earth. But there are only so many chemical ingredients in the universe's pantry, and only so many ways to mix them. Scientists have now exploited those limitations to write a cookbook of hundreds of chemical recipes with the potential to give rise to life. Their ingredient list could focus the search for life elsewhere in the universe by pointing out the most likely conditions -- planetary versions of mixing techniques, oven temperatures and baking times -- for the recipes to come together.
Published Precisely arranging nanoparticles


In the incredibly small world of molecules, the elementary building blocks -- the atoms -- join together in a very regular pattern. In contrast, in the macroscopic world with its larger particles, there is much greater disorder when particles connect. A research team has now succeeded in achieving the same precise arrangement of atoms shown in molecules, but using nanometer-sized particles, known as 'plasmonic molecules' -- combinations of nanoscale metallic structures that have unique properties.
Published Combustion powers bug-sized robots to leap, lift and race


Researchers combined soft microactuators with high-energy-density chemical fuel to create an insect-scale quadrupedal robot that is powered by combustion and can outrace, outlift, outflex and outleap its electric-driven competitors.
Published Cheap and efficient catalyst could boost renewable energy storage


Storing renewable energy as hydrogen could soon become much easier thanks to a new catalyst based on single atoms of platinum.
Published Engineers grow full wafers of high-performing 2D semiconductor that integrates with state-of-the-art chips


Researchers have grown a high-performing 2D semiconductor to a full-size, industrial-scale wafer. In addition, the semiconductor material, indium selenide (InSe), can be deposited at temperatures low enough to integrate with a silicon chip.
Published Scientists develop method to detect deadly infectious diseases


Researchers have developed a way of detecting the early onset of deadly infectious diseases using a test so ultrasensitive that it could someday revolutionize medical approaches to epidemics. The test is an electronic sensor contained within a computer chip. It employs nanoballs -- microscopic spherical clumps made of tinier particles of genetic material -- and combines that technology with advanced electronics.
Published Crucial third clue to finding new diamond deposits


Researchers studying diamond-rich rocks from Western Australia's Argyle volcano have identified the missing third key ingredient needed to bring valuable pink diamonds to the Earth's surface where they can be mined, which could greatly help in the global hunt for new deposits.
Published Groundbreaking research shows that the limits of nuclear stability change in stellar environments where temperatures reach billions of degrees Celsius



New research is challenging the scientific status quo on the limits of the nuclear chart in hot stellar environments where temperatures reach billions of degrees Celsius.
Published Snaps supersonic outflow of young star


Herbig-Haro (HH) objects are luminous regions surrounding newborn stars, formed when stellar winds or jets of gas spewing from these newborn stars form shock waves colliding with nearby gas and dust at high speeds. This image of HH 211 from NASA's James Webb Space Telescope reveals an outflow from a Class 0 protostar, an infantile analog of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun).
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.