Showing 20 articles starting at article 281
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Offbeat: Computers and Math
Published Wind farms can offset their emissions within two years



After spinning for under two years, a wind farm can offset the carbon emissions generated across its entire 30-year lifespan, when compared to thermal power plants.
Published Bioengineered enzyme creates natural vanillin from plants in one step



Vanilla, the most widely used flavoring compound in confectionaries and cosmetics, gets its sweet flavor and aroma from the chemical compound -- 'vanillin'. However, the large-scale production of natural vanillin is impeded by the lack of microbial processes and enzymes which can commercially generate vanillin. Now, researchers have genetically engineered a novel enzyme which can convert ferulic acid from plant waste into vanillin in a one-step sustainable process.
Published Jet-propelled sea creatures could improve ocean robotics



Scientists have discovered that colonies of gelatinous sea animals swim through the ocean in giant corkscrew shapes using coordinated jet propulsion, an unusual kind of locomotion that could inspire new designs for efficient underwater vehicles.
Published Carbon-capture batteries developed to store renewable energy, help climate



Researchers are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. Researchers recently created and tested two different formulations for batteries that store renewable energy; when the energy is later used, an electrochemical reaction converts industrial carbon dioxide emissions into a solid form that has the potential to be used in other products.
Published Robotic 'SuperLimbs' could help moonwalkers recover from falls



SuperLimbs, a system of wearable robotic limbs, can physically support an astronaut and lift them back on their feet after a fall, helping them conserve energy for other essential tasks.
Published Making batteries takes a lot of lithium: Some could come from gas well wastewater



A new analysis suggests that if it could be extracted with complete efficiency, lithium from the wastewater of Marcellus shale gas wells could supply up to 40% of the country's demand.
Published Wavefunction matching for solving quantum many-body problems



Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.
Published Animal brain inspired AI game changer for autonomous robots



A team of researchers has developed a drone that flies autonomously using neuromorphic image processing and control based on the workings of animal brains. Animal brains use less data and energy compared to current deep neural networks running on GPUs (graphic chips). Neuromorphic processors are therefore very suitable for small drones because they don't need heavy and large hardware and batteries. The results are extraordinary: during flight the drone's deep neural network processes data up to 64 times faster and consumes three times less energy than when running on a GPU. Further developments of this technology may enable the leap for drones to become as small, agile, and smart as flying insects or birds.
Published A novel multifunctional catalyst turns methane into valuable hydrocarbons



The optimal design of a novel zeolite catalyst enables tandem reaction that turns greenhouse gases into value-added chemicals, report scientists. By tuning the separation between different active sites on the catalyst, they achieved the stepwise conversion of methane into methanol and then to hydrocarbons at mild conditions. These findings will help reduce energy costs and greenhouse gas emissions across various industrial fields.
Published Much more than a world first image of radioactive cesium atoms



Thirteen years after the nuclear disaster at the Fukushima Daiichi Nuclear Power Plant (FDNPP), a breakthrough in analysis has permitted a world first: direct imaging of radioactive cesium (Cs) atoms in environmental samples.
Published Green concrete recycling twice the coal ash is built to last



New modelling reveals that low-carbon concrete can recycle double the amount of coal ash compared to current standards, halve the amount of cement required and perform exceptionally well over time.
Published Polyglycerol coating: A breakthrough in safer nanoparticle environmental remediation



Engineered nanoparticles (NPs), commonly utilized in environmental remediation, can pose significant toxicity risks upon ingestion by organisms. Researchers have now devised a solution to this challenge by creating a hydrophilic coating, utilizing polyglycerol (PG) functionalization, for NPs. This coating effectively prevents NP aggregation inside organisms' bodies and facilitates easier passage, thereby reducing accumulation. Applicable to various NPs, the novel surface functionalization approach holds promise for addressing concerns about NP toxicity in environmental remediation.
Published Robots' and prosthetic hands' sense of touch could be as fast as humans



Research could pave the way for a prosthetic hand and robot to be able to feel touch like a human hand. The technology could also be used to help restore lost functionality to patients after a stroke.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Next-generation sustainable electronics are doped with air



Semiconductors are the foundation of all modern electronics. Now, researchers have developed a new method where organic semiconductors can become more conductive with the help of air as a dopant. The study is a significant step towards future cheap and sustainable organic semiconductors.
Published Promising new development in solar cell technology



Researchers who contributed to the development of record-breaking solar cells a few years ago, expanded their invention. The self-assembled monolayers can now be applied not only in inverted but also in regular structure perovskite solar cells.
Published Scientists develop an affordable sensor for lead contamination



A new system could enable simple, low-cost detectors for monitoring water for lead contamination, and potentially other heavy metals as well.
Published Virtual reality becomes more engaging when designers use cinematic tools



Cinematography techniques can significantly increase user engagement with virtual environments and, in particular, the aesthetic appeal of what users see in virtual reality.
Published Metalens expands Its reach from light to sound



Engineers achieve a wide field-of-hearing acoustic metalens free from aberrations.
Published Transforming waste carbon dioxide into high-value chemicals with a cost reduction of about 30%



A team of scientists has developed a novel technique to convert carbon dioxide (CO2) from treated flue gas directly into high-value chemicals and fuels. This innovation sidesteps the conventional approach of using high-purity CO2 for electrochemical reduction processes, achieving significant cost savings of about 30%.