Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Offbeat: Paleontology and Archeology
Published Melanin from cuttlefish ink as a sustainable biomass resource



Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.
Published Investigating newly discovered hydrothermal vents at depths of 3,000 meters off Svalbard



Hydrothermal vents can be found around the world at the junctions of drifting tectonic plates. But there are many hydrothermal fields still to be discovered. During a 2022 expedition of the MARIA S. MERIAN, the first field of hydrothermal vents on the 500-kilometer-long Knipovich Ridge off the coast of Svalbard was discovered.
Published Synthetic fuels and chemicals from CO2: Ten experiments in parallel



Why do just one experiment at a time when you can do ten? Researchers have developed an automated system, which allows them to research catalysts, electrodes, and reaction conditions for CO2 electrolysis up to ten times faster. The system is complemented by an open-source software for data analysis.
Published No more stressing out over structural formulas



Structural formulas are a source of dread for many students, but they're an essential tool in biology lessons. A study has now shown that the stress levels of students working with chemical formulas are significantly reduced if they are given simple tips on how to deal with these formulas.
Published New materials: Synthetic pathway for promising nitride compounds discovered



Chemists have successfully synthesized Ruddlesden-Popper nitrides for the first time, opening the door to new materials with unique properties.
Published First specific PET scan for TB could enable more effective treatment



A more accurate way to scan for tuberculosis (TB) has been developed, using positron emission tomography (PET). The team has developed a new radiotracer, which is taken up by live TB bacteria in the body. Radiotracers are radioactive compounds which give off radiation that can be detected by scanners and turned into a 3D image. The new radiotracer, called FDT, enables PET scans to be used for the first time to accurately pinpoint when and where the disease is still active in a patient's lungs.
Published Aromatic compounds: A ring made up solely of metal atoms



The term aromaticity is a basic, long-standing concept in chemistry that is well established for ring-shaped carbon compounds. Aromatic rings consisting solely of metal atoms were, however, heretofore unknown. A research team recently succeeded in isolating such a metal ring and describing it in full.
Published Last surviving woolly mammoths were inbred but not doomed to extinction



The last population of woolly mammoths was isolated on Wrangel Island off the coast of Siberia 10,000 years ago, when sea levels rose and cut the mountainous island off from the mainland. A new genomic analysis reveals that the isolated mammoths, who lived on the island for the subsequent 6,000 years, originated from at most 8 individuals but grew to 200--300 individuals within 20 generations. The researchers report that the Wrangel Island mammoths' genomes showed signs of inbreeding and low genetic diversity but not to the extent that it can explain their ultimate (and mysterious) extinction.
Published Common plastics could passively cool and heat buildings with the seasons



By restricting radiant heat flows between buildings and their environment to specific wavelengths, coatings engineered from common materials can achieve energy savings and thermal comfort that goes beyond what traditional building envelopes can achieve.
Published Prehistoric 'Pompeii' discovered: Most pristine trilobite fossils ever found shake up scientific understanding of the long extinct group



Researchers have described some of the best-preserved three-dimensional trilobite fossils ever discovered. The fossils, which are more than 500 million years old, were collected in the High Atlas of Morocco and are being referred to by scientists as 'Pompeii' trilobites due to their remarkable preservation in ash.
Published Scientists use computational modeling to guide a difficult chemical synthesis



Researchers have discovered a new way to drive chemical reactions that could generate a wide variety of azetidines -- four-membered nitrogen heterocycles that have desirable pharmaceutical properties.
Published Researchers find genetic stability in a long-term Panamanian hybrid zone of manakin birds



We often think of species as separate and distinct, but sometimes they can interbreed and create hybrids. When this happens consistently in a specific area, it forms what's known as a hybrid zone. These zones can be highly dynamic or remarkably stable, and studying them can reveal key insights into how species boundaries evolve -- or sometimes blur. Researchers now describe a hybrid zone between two manakin species in Panama that has overall remained relatively stable over the past 30 years.
Published Simple new process stores CO2 in concrete without compromising strength



By using carbonated -- rather than still -- water during the concrete manufacturing process, a team of engineers has discovered a new way to store carbon dioxide (CO2) in the ubiquitous construction material.
Published Solar technology: Innovative light-harvesting system works very efficiently



Researchers are reporting progress on the road to more efficient utilization of solar energy: They have developed an innovative light-harvesting system.
Published Almonds, pottery, wood help date famed Kyrenia shipwreck



Researchers have identified the likeliest timeline of the famous Hellenistic-era Kyrenia shipwreck, discovered and recovered off the north coast of Cyprus in the 1960s.
Published Microrobot-packed pill shows promise for treating inflammatory bowel disease in mice



Engineers have developed a pill that releases microscopic robots, or microrobots, into the colon to treat inflammatory bowel disease (IBD). The experimental treatment, given orally, has shown success in mice. It significantly reduced IBD symptoms and promoted the healing of damaged colon tissue without causing toxic side effects.
Published Shocked quartz reveals evidence of historical cosmic airburst



Researchers continue to expand the case for the Younger Dryas Impact hypothesis. The idea proposes that a fragmented comet smashed into the Earth's atmosphere 12,800 years ago, causing a widespread climatic shift that, among other things, led to the abrupt reversal of the Earth's warming trend and into an anomalous near-glacial period called the Younger Dryas.
Published An optical lens that senses gas



A research team has developed a small optical lens, only a few millimeters in size, whose refractive behavior changes in the presence of gas. This 'intelligent' behavior of the micro-lens is enabled by the hybrid glass material from which it is made. The molecular structure of the lens consists of a three-dimensional lattice with cavities that can accommodate gas molecules, thereby affecting the optical properties of the material.
Published Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F



Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.
Published Novel application of optical tweezers: Colorfully showing molecular energy transfer



Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.