Showing 20 articles starting at article 661

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Geoscience: Earthquakes

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry
Published

Unraveling the role of supersulfides in regulating mitochondrial function and longevity      (via sciencedaily.com)     Original source 

Supersulfides, many of which are produced by cysteinyl-tRNA synthetase (CARS), are essential compounds across many different lifeforms. However, the precise physiological roles of CARS-produced supersulfide are unclear. Now, using a strategically engineered yeast mutant with a deficient CARS gene, researchers from Japan have shown that supersulfides control cell longevity by mediating mitochondrial energy metabolism and regulating protein quality.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Cheap substitute for expensive metal in an industrially common chemical reaction      (via sciencedaily.com)     Original source 

Researchers have helped minimize the cost of an important class of chemical transformations: converting nitriles into primary amines. Their experimental protocol uses a cheap nickel catalyst instead of an expensive noble metal, is convenient to conduct, and works for a broad range of starting materials. This work is an important advance in sustainable chemistry that might help lower the cost of producing nylon and many other everyday products.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Cryo-microscopy reveals nano-sized copy machine implicated in origin of life      (via sciencedaily.com)     Original source 

RNA is thought to have sparked the origin of life by self-copying. Researchers have now revealed the atomic structure of an 'RNA copy machine' through cryo-EM. This breakthrough sheds light on a primordial RNA world and fuels advancements in RNA nanotechnology and medicine.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists identify overlooked uncertainty in real-world experiments      (via sciencedaily.com)     Original source 

The rules of statistical physics address the uncertainty about the state of a system that arises when that system interacts with its environment. But they've long missed another kind. In a new paper, researchers argue that uncertainty in the thermodynamic parameters themselves -- built into equations that govern the energetic behavior of the system -- may also influence the outcome of an experiment.

Chemistry: Biochemistry Computer Science: Quantum Computers Energy: Nuclear Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Solid-state qubits: Forget about being clean, embrace mess      (via sciencedaily.com)     Original source 

New findings debunk previous wisdom that solid-state qubits need to be super dilute in an ultra-clean material to achieve long lifetimes. Instead, cram lots of rare-earth ions into a crystal and some will form pairs that act as highly coherent qubits, a new paper shows.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

The power of pause: Controlled deposition for effective and long-lasting organic devices      (via sciencedaily.com)     Original source 

In organic optoelectronic devices, the control of molecular deposition on thin films is important for optimal surface arrangement and device performance. In a recent study, researchers developed a new method for achieving stable deposition on thin films effectively. They also developed a tool to track real-time potential changes on the surface. These findings are expected to aid the improvement of organic devices, such as organic light-emitting diodes, in terms of efficacy and durability.

Chemistry: Biochemistry Engineering: Graphene Engineering: Nanotechnology
Published

Innovative graphene-based implantable technology paves the way for high-precision therapeutic applications      (via sciencedaily.com)     Original source 

A new study presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Using idle trucks to power the grid with clean energy      (via sciencedaily.com)     Original source 

Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular Chemistry: Biochemistry
Published

3D in vitro human atherosclerosis model for high-throughput drug screening      (via sciencedaily.com)     Original source 

A groundbreaking 3D, three-layer nanomatrix vascular sheet that possesses multiple features of atherosclerosis has been applied for developing a high-throughput functional assay of drug candidates to treat this disease, researchers report.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production      (via sciencedaily.com)     Original source 

Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New catalytic technique creates key component of incontinence drug in less time      (via sciencedaily.com)     Original source 

Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Spying on a shape-shifting protein      (via sciencedaily.com)     Original source 

Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

Light-matter interaction: Broken symmetry drives polaritons      (via sciencedaily.com)     Original source 

An international team of scientists provide an overview of the latest research on light-matter interactions. In a new paper, they provide an overview of the latest research on polaritons, tiny particles that arise when light and material interact in a special way.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Biochemistry Environmental: General Geoscience: Environmental Issues
Published

Wristband monitors provide detailed account of air pollution exposure      (via sciencedaily.com)     Original source 

Environmental epidemiologists report on a new study of air pollution exposures collected using personal wristband monitors worn by pregnant individuals in New York City matched with data from a questionnaire. Factors predictive of exposures to air pollution include income, time spent outdoors, maternal age, country of birth, transportation type, and season.

Chemistry: Biochemistry Chemistry: General Offbeat: General
Published

Is there a common link between the physical and social worlds? Two brothers think so      (via sciencedaily.com)     Original source 

A Rutgers biophysical chemist and his brother, a political scientist on the West Coast, have joined intellectual forces, realizing a long-standing dream of co-authoring an article that bridges their disciplines involving cells and society. In their paper, they have proposed that powerful parallels exist between the microscopic, natural world of cells and molecules and the human-forged realm of organizations and political systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers step closer to mimicking nature's mastery of chemistry      (via sciencedaily.com)     Original source 

In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: Optics
Published

Scientists discover how ultraviolet light degrades coronavirus      (via sciencedaily.com)     Original source 

New research has revealed how light can be used to destroy infectious coronavirus particles that contaminate surfaces. Scientists are interested in how environments, such as surgeries, can be thoroughly disinfected from viruses such as SARS-CoV-2 that caused the COVID-19 pandemic.

Biology: Biochemistry Biology: General Biology: Zoology Chemistry: Biochemistry Engineering: Robotics Research
Published

A beating biorobotic heart aims to better simulate valves      (via sciencedaily.com)     Original source 

Combining a biological heart and a silicone robotic pump, researchers created a biorobotic heart that beats like a real one, with a focus on a valve on the left side of the heart. The heart valve simulator can mimic the structure, function, and motion of a healthy or diseased heart, allowing surgeons and researchers to demonstrate various interventions while collecting real-time data.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

The reaction mechanism for catalytic ammonia production experimentally determined      (via sciencedaily.com)     Original source 

Researchers have now been able to study the surface of iron and ruthenium catalysts when ammonia is formed from nitrogen and hydrogen. A better knowledge of the catalytic process and the possibility of finding even more efficient materials opens the door for a green transition in the currently very CO2-intensive chemical industry.