Showing 20 articles starting at article 641

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Geoscience: Landslides

Return to the site home page

Chemistry: Biochemistry Engineering: Graphene Engineering: Nanotechnology
Published

Innovative graphene-based implantable technology paves the way for high-precision therapeutic applications      (via sciencedaily.com)     Original source 

A new study presents an innovative graphene-based neurotechnology with the potential for a transformative impact in neuroscience and medical applications.

Chemistry: Biochemistry Energy: Alternative Fuels Energy: Fossil Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Using idle trucks to power the grid with clean energy      (via sciencedaily.com)     Original source 

Researchers are tapping into idled electric vehicles to act as mobile generators and help power overworked and aging electricity grids. After analyzing energy demand on Alberta's power grid during rush hour, the research proposes an innovative way to replenish electrical grids with power generated from fuel cells in trucks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Molecular Chemistry: Biochemistry
Published

3D in vitro human atherosclerosis model for high-throughput drug screening      (via sciencedaily.com)     Original source 

A groundbreaking 3D, three-layer nanomatrix vascular sheet that possesses multiple features of atherosclerosis has been applied for developing a high-throughput functional assay of drug candidates to treat this disease, researchers report.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Core-shell 'chemical looping' boosts efficiency of greener approach to ethylene production      (via sciencedaily.com)     Original source 

Oxidative coupling of methane (OCM) is now one step closer to leaving the lab and entering the real world. Researchers have developed an OCM catalyst that exceeds 30 percent when it comes to the production of ethylene.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New catalytic technique creates key component of incontinence drug in less time      (via sciencedaily.com)     Original source 

Researchers have developed a unique catalyst that promises to revolutionize drug synthesis. It overcomes a common problem associated with the production of drugs from ketones. Using their catalyst, the researchers synthesized a key component of the commonly used incontinence drug oxybutynin. Their results underscore the potential of the catalyst to improve drug discovery and development.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Spying on a shape-shifting protein      (via sciencedaily.com)     Original source 

Researchers are using crystallography to gain a better understanding of how proteins shapeshift. The knowledge can provide valuable insight into stopping and treating diseases.

Chemistry: Biochemistry Engineering: Nanotechnology Physics: Optics
Published

Light-matter interaction: Broken symmetry drives polaritons      (via sciencedaily.com)     Original source 

An international team of scientists provide an overview of the latest research on light-matter interactions. In a new paper, they provide an overview of the latest research on polaritons, tiny particles that arise when light and material interact in a special way.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Generating stable qubits at room temperature      (via sciencedaily.com)     Original source 

Quantum bits, or qubits, can revolutionize computing and sensing systems. However, cryogenic temperatures are required to ensure the stability of qubits. In a groundbreaking study, researchers observed stable molecular qubits of four electron spins at room temperature for the first time by suppressing the mobility of a dye molecule within a metal-organic framework. Their innovative molecular design opens doors to materials that could drive the development of quantum technologies capable of functioning in real-world conditions.

Chemistry: Biochemistry Environmental: General Geoscience: Environmental Issues
Published

Wristband monitors provide detailed account of air pollution exposure      (via sciencedaily.com)     Original source 

Environmental epidemiologists report on a new study of air pollution exposures collected using personal wristband monitors worn by pregnant individuals in New York City matched with data from a questionnaire. Factors predictive of exposures to air pollution include income, time spent outdoors, maternal age, country of birth, transportation type, and season.

Chemistry: Biochemistry Chemistry: General Offbeat: General
Published

Is there a common link between the physical and social worlds? Two brothers think so      (via sciencedaily.com)     Original source 

A Rutgers biophysical chemist and his brother, a political scientist on the West Coast, have joined intellectual forces, realizing a long-standing dream of co-authoring an article that bridges their disciplines involving cells and society. In their paper, they have proposed that powerful parallels exist between the microscopic, natural world of cells and molecules and the human-forged realm of organizations and political systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Researchers step closer to mimicking nature's mastery of chemistry      (via sciencedaily.com)     Original source 

In nature, organic molecules are either left- or right-handed, but synthesizing molecules with a specific 'handedness' in a lab is hard to do. Make a drug or enzyme with the wrong 'handedness,' and it just won't work. Now chemists are getting closer to mimicking nature's chemical efficiency through computational modeling and physical experimentation.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: Optics
Published

Scientists discover how ultraviolet light degrades coronavirus      (via sciencedaily.com)     Original source 

New research has revealed how light can be used to destroy infectious coronavirus particles that contaminate surfaces. Scientists are interested in how environments, such as surgeries, can be thoroughly disinfected from viruses such as SARS-CoV-2 that caused the COVID-19 pandemic.

Biology: Biochemistry Biology: General Biology: Zoology Chemistry: Biochemistry Engineering: Robotics Research
Published

A beating biorobotic heart aims to better simulate valves      (via sciencedaily.com)     Original source 

Combining a biological heart and a silicone robotic pump, researchers created a biorobotic heart that beats like a real one, with a focus on a valve on the left side of the heart. The heart valve simulator can mimic the structure, function, and motion of a healthy or diseased heart, allowing surgeons and researchers to demonstrate various interventions while collecting real-time data.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Geochemistry
Published

The reaction mechanism for catalytic ammonia production experimentally determined      (via sciencedaily.com)     Original source 

Researchers have now been able to study the surface of iron and ruthenium catalysts when ammonia is formed from nitrogen and hydrogen. A better knowledge of the catalytic process and the possibility of finding even more efficient materials opens the door for a green transition in the currently very CO2-intensive chemical industry.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Inspired by Greek mythology, this potential drug shows promise for vanquishing Parkinson's RNA in early studies      (via sciencedaily.com)     Original source 

A new discovery takes its inspiration from Greek mythology. The compound is described as a chimera, because it battles a toxic cause of Parkinson's in two ways.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

The first domino falls for redox reactions      (via sciencedaily.com)     Original source 

Transmitting an effect known as a domino reaction using redox chemistry has been achieved for the first time.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists develop new approach to inserting single carbon atoms      (via sciencedaily.com)     Original source 

Chemists have presented a new approach in which a single carbon atom is inserted into the carbon skeleton of cyclic compounds in order to adjust the ring size. The method could be relevant, for example, for the production of active ingredients in new pharmaceutical products.

Chemistry: Biochemistry Engineering: Robotics Research
Published

Towards more accurate 3D object detection for robots and self-driving cars      (via sciencedaily.com)     Original source 

Robots and autonomous vehicles can use 3D point clouds from LiDAR sensors and camera images to perform 3D object detection. However, current techniques that combine both types of data struggle to accurately detect small objects. Now, researchers have developed DPPFA Net, an innovative network that overcomes challenges related to occlusion and noise introduced by adverse weather. Their findings will pave the way for more perceptive and capable autonomous systems.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Geochemistry
Published

Bottled water can contain hundreds of thousands of previously uncounted tiny plastic bits      (via sciencedaily.com)     Original source 

In recent years, there has been rising concern that tiny particles known as microplastics are showing up basically everywhere on Earth, from polar ice to soil, drinking water and food. Formed when plastics break down into progressively smaller bits, these particles are being consumed by humans and other creatures, with unknown potential health and ecosystem effects. One big focus of research: bottled water, which has been shown to contain tens of thousands of identifiable fragments in each container. Now, using newly refined technology, researchers have entered a whole new plastic world: the poorly known realm of nanoplastics, the spawn of microplastics that have broken down even further. For the first time, they counted and identified these minute particles in bottled water. They found that on average, a liter contained some 240,000 detectable plastic fragments -- 10 to 100 times greater than previous estimates, which were based mainly on larger sizes.

Chemistry: Biochemistry Chemistry: General Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Accounting for plastic persistence can minimize environmental impacts      (via sciencedaily.com)     Original source 

Researchers have developed a sustainability metric for the ecological design of plastic products that have low persistence in the environment. Adhering to this metric could provide substantial environmental and societal benefits, according to a new study.