Showing 20 articles starting at article 841

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Biochemistry, Geoscience: Landslides

Return to the site home page

Chemistry: Biochemistry Geoscience: Environmental Issues
Published

Sustainable living technology      (via sciencedaily.com)     Original source 

It is now apparent that the mass-produced artefacts of technology in our increasingly densely populated world – whether electronic devices, cars, batteries, phones, household appliances, or industrial robots – are increasingly at odds with the sustainable bounded ecosystems achieved by living organisms based on cells over millions of years. Cells provide organisms with soft and sustainable environmental interactions with complete recycling of material components, except in a few notable cases like the creation of oxygen in the atmosphere, and of the fossil fuel reserves of oil and coal (as a result of missing biocatalysts). However, the fantastic information content of biological cells (gigabits of information in DNA alone) and the complexities of protein biochemistry for metabolism seem to place a cellular approach well beyond the current capabilities of technology, and prevent the development of intrinsically sustainable technology.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Metal-organic frameworks could someday deliver antibacterial nitric oxide      (via sciencedaily.com)     Original source 

Because metal-organic frameworks (MOFs) — highly porous metal complexes — are so structurally and chemically diverse, they could be used for many applications, such as drug delivery and environmental clean-up. But researchers still need to get a better understanding of how they function, especially when embedded in polymers. Researchers have now developed and characterized nitric oxide (NO)-storing MOFs embedded in a thin film with novel antibacterial potential.

Chemistry: Biochemistry Chemistry: General
Published

'Mona Lisa' hides a surprising mix of toxic pigments, study shows      (via sciencedaily.com)     Original source 

Leonardo da Vinci is renowned to this day for innovations in fields across the arts and sciences. Now, new analyses show that his taste for experimentation extended even to the base layers underneath his paintings. Surprisingly, samples from both the 'Mona Lisa' and the 'Last Supper' suggest that he experimented with lead(II) oxide, causing a rare compound called plumbonacrite to form below his artworks.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Bringing out the color in zinc      (via sciencedaily.com)     Original source 

Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.

Chemistry: Biochemistry Offbeat: General Physics: Acoustics and Ultrasound
Published

Pingpong balls score big as sound absorbers      (via sciencedaily.com)     Original source 

Researchers describe an acoustic meta-surface that uses pingpong balls, with small holes punctured in each, as Helmholtz resonators to create inexpensive but effective low-frequency sound insulation. The coupling between two resonators led to two resonance frequencies, and more resonant frequencies meant the device was able to absorb more sound. At the success of two coupled resonators, the researchers added more, until their device resembled a square sheet of punctured pingpong balls, multiplying the number of resonant frequencies that could be absorbed.

Chemistry: Biochemistry Engineering: Robotics Research Physics: General Physics: Quantum Physics
Published

Unifying matter, energy and consciousness      (via sciencedaily.com)     Original source 

Understanding the interplay between consciousness, energy and matter could bring important insights to our fundamental understanding of reality.

Chemistry: Biochemistry Chemistry: General Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Modular dam design could accelerate the adoption of renewable energy      (via sciencedaily.com)     Original source 

Scientists have developed a new modular steel buttress dam system designed to resolve energy storage issues hindering the integration of renewable resources into the energy mix. The new modular steel buttress dam system facilitates the rapid construction of paired reservoir systems for grid-scale energy storage and generation using closed-loop pumped storage hydropower, cutting dam construction costs by one-third and reducing construction schedules by half.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Researchers create a neural network for genomics -- one that explains how it achieves accurate predictions      (via sciencedaily.com)     Original source 

A team of computer scientists has created a neural network that can explain how it reaches its predictions. The work reveals what accounts for the functionality of neural networks--the engines that drive artificial intelligence and machine learning--thereby illuminating a process that has largely been concealed from users.   

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: General
Published

The medicine of the future could be artificial life forms      (via sciencedaily.com)     Original source 

Imagine a life form that doesn't resemble any of the organisms found on the tree of life. One that has its own unique control system, and that a doctor would want to send into your body. It sounds like a science fiction movie, but according to nanoscientists, it can—and should—happen in the future.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Optics
Published

Physicists find evidence for magnetically bound excitons      (via sciencedaily.com)     Original source 

Physicists have experimentally detected how so-called Hubbard excitons form in real-time. 

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry
Published

New open-source method to improve decoding of single-cell data      (via sciencedaily.com)     Original source 

Researchers have developed a new open-source computational method, dubbed Spectra, which improves the analysis of single-cell transcriptomic data. By guiding data analysis in a unique way, Spectra can offer new insights into the complex interplay between cells — like the interactions between cancer cells and immune cells, which are critical to improving immunotherapy treatments.

Chemistry: Biochemistry Engineering: Nanotechnology
Published

New research may make future design of nanotechnology safer with fewer side effects      (via sciencedaily.com)     Original source 

A new study may offer a strategy that mitigates negative side effects associated with intravenous injection of nanoparticles commonly used in medicine.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Two-dimensional compounds can capture carbon from the air      (via sciencedaily.com)     Original source 

Some of the thinnest materials known to humankind -- MXene and MBene compounds -- may provide solutions to scientists in their quest to curb the effects of global warming. These substances are only a few atoms thick, making them two-dimensional. Because of their large surface area, the materials have the potential to absorb carbon dioxide molecules from the atmosphere, which could help reduce the harmful effects of climate change by safely sequestering carbon dioxide, according to a review study.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Space: Cosmology Space: General
Published

New 'Assembly Theory' unifies physics and biology to explain evolution and complexity      (via sciencedaily.com)     Original source 

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Offbeat: Computers and Math Offbeat: General
Published

Could future AI crave a favorite food?      (via sciencedaily.com)     Original source 

Can artificial intelligence (AI) get hungry? Develop a taste for certain foods? Not yet, but a team of researchers is developing a novel electronic tongue that mimics how taste influences what we eat based on both needs and wants, providing a possible blueprint for AI that processes information more like a human being.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Graphene oxide reduces the toxicity of Alzheimer's proteins      (via sciencedaily.com)     Original source 

A probable early driver of Alzheimer's disease is the accumulation of molecules called amyloid peptides. These cause cell death, and are commonly found in the brains of Alzheimer’s patients. Researchers have now shown that yeast cells that accumulate these misfolded amyloid peptides can recover after being treated with graphene oxide nanoflakes.

Chemistry: Biochemistry
Published

Human disease simulator lets scientists choose their own adventure      (via sciencedaily.com)     Original source 

Scientists have developed a device smaller than a toddler's shoebox -- called Lattice --that can simulate any human disease in up to eight organs (cell cultures from a human organ) or test new drugs without ever entering -- or harming -- the body. It is a major advancement from current in vitro systems, which can only study two cell cultures simultaneously.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Electronic sensor the size of a single molecule a potential game-changer      (via sciencedaily.com)     Original source 

Researchers have developed a molecular-sized, more efficient version of a widely used electronic sensor, in a breakthrough that could bring widespread benefits.