Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry
Published Unique characteristics of previously unexplored protein discovered (via sciencedaily.com) Original source
Research achieves scientific breakthrough in understanding cell division.
Published Immune system in the spotlight (via sciencedaily.com) Original source
Our immune system is always on alert, detecting and eliminating pathogens and cancer cells. Cellular control mechanisms cause diseased cells to present antigens on their surface like signs for the immune system. For analysis of the necessary complex antigen processing and transport processes in real time, researchers have developed a 'cage' that is opened with light to release trapped antigens at a specific place and time.
Published Capturing carbon with energy-efficient sodium carbonate-nanocarbon hybrid material (via sciencedaily.com) Original source
Carbon capture is a promising approach for mitigating carbon dioxide (CO2) emissions. Different materials have been used to capture CO2 from industrial exhaust gases. Scientists developed hybrid CO2 capture materials containing sodium carbonate and nanocarbon prepared at different temperatures, tested their performance, and identified the optimal calcination temperature condition. They found that the hybrid material exhibits and maintains high CO2 capture capacity for multiple regeneration cycles at a lower temperature, making it cost- and energy-effective.
Published Oil and natural gas development in Permian is a key source of ozone pollution in Carlsbad Caverns National Park, study finds (via sciencedaily.com) Original source
New research shows that ozone concentrations at Carlsbad Caverns National Park frequently exceed Environmental Protection Agency health standards, likely due to oil and natural gas development in the Permian Basin and surrounding region.
Published Local dragonflies expose mercury pollution patterns (via sciencedaily.com) Original source
A new study has unveiled surprising findings about mercury pollution: where it comes from and how it moves through the environment vary significantly depending on the ecosystem. In drier regions, most mercury is deposited through rain and snow. In wetter, forested areas, gaseous mercury from the air sticks to leaves, which then fall and carry the toxin into the ground.
Published Crystals from radioactive metal actinium (via sciencedaily.com) Original source
Researchers grew crystals containing actinium and illuminated them with X-rays to learn how the radioactive metal binds with other elements. That information could help design better cancer treatments.
Published Microbeads with adaptable fluorescent colors from visible light to near-infrared (via sciencedaily.com) Original source
Researchers have successfully developed an environmentally friendly, microspherical fluorescent material primarily made from citric acid. These microbeads emit various colors of light depending on the illuminating light and the size of the beads, which suggests a wide range of applications. Furthermore, the use of plant-derived materials allows for low-cost and energy-efficient synthesis.
Published A chemical claw machine bends and stretches when exposed to vapors (via sciencedaily.com) Original source
Scientists have developed a tiny 'claw machine' that is able to pick up and drop a marble-sized ball in response to exposure to chemical vapors. The findings point to a technique that can enable soft actuators--the parts of a machine that make it move--to perform multiple tasks without the need for additional costly materials. While existing soft actuators can be 'one-trick ponies' restricted to one type of movement, this novel composite film contorts itself in different ways depending on the vapor that it is exposed to.
Published A better way to make RNA drugs (via sciencedaily.com) Original source
RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Neural networks made of light (via sciencedaily.com) Original source
Scientists propose a new way of implementing a neural network with an optical system which could make machine learning more sustainable in the future. In a new paper, the researchers have demonstrated a method much simpler than previous approaches.
Published Scientists create computer program that 'paints' the structure of molecules in the style of Piet Mondrian (via sciencedaily.com) Original source
Scientists have created a computer program that 'paints' the structure of molecules in the style of famous Dutch artist, Piet Mondrian. Researchers are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.
Published A comprehensive derivative synthesis method for development of new antimicrobial drugs (via sciencedaily.com) Original source
A method to screen a wide variety of drug candidates without laborious purification steps could advance the fight against drug-resistant bacteria.
Published Ultrasound technology can be used to boost mindfulness, study finds (via sciencedaily.com) Original source
In a new study, researchers used low-intensity ultrasound technology to noninvasively alter a brain region associated with activities such as daydreaming, recalling memories and envisioning the future.
Published Engineers' probe could help advance treatment for spinal cord disease, injury (via sciencedaily.com) Original source
Neuroscientists have used a nanosized sensor to record spinal cord neurons in free-moving mice, a feat that could lead to the development of better treatments for spinal cord disease and injury.
Published Muscle machine: How water controls the speed of muscle contraction (via sciencedaily.com) Original source
The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality (via sciencedaily.com) Original source
Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Quadrupolar nuclei measured by zero-field NMR (via sciencedaily.com) Original source
Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.
Published Bacteria form glasslike state (via sciencedaily.com) Original source
Dense E.coli bacteria have several similar qualities to colloidal glass. Colloids are substances made up of small particles suspended within a fluid, like ink for example. When these particles become higher in density and more packed together, they form a 'glassy state.' When researchers multiplied E.coli bacteria within a confined area, they found that they exhibited similar characteristics. More surprisingly, they also showed some other unique properties not typically found in glass-state materials. This study contributes to our understanding of glassy 'active matter,' a relatively new field of materials research which crosses physics and life science. In the long term, the researchers hope that these results will contribute to developing materials with new functional capabilities, as well as aiding our understanding of biofilms (where microorganisms stick together to form layers on surfaces) and natural bacterial colonies.
Published Atlas of proteins reveals inner workings of cells (via sciencedaily.com) Original source
Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published A new material derived from graphene improves the performance of neuroprostheses (via sciencedaily.com) Original source
Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.